Combinatorial Multiplicity of Cardiometabolic and Inflammatory Markers in Gum Arabica Modality of CKD CAM: Part 2

Main Article Content

Sameeha Alshelleh https://orcid.org/0000-0003-4216-0662
Maysa Suyagh https://orcid.org/0000-0003-2042-8584
Hussein Alhawari https://orcid.org/0000-0002-5413-3736
NAILYA BULATOVA https://orcid.org/0000-0001-6754-0325
VIOLET KASABRI https://orcid.org/0000-0003-1927-0193
Ayman Wahbeh https://orcid.org/0000-0002-3159-2518
Izzat Alawwa https://orcid.org/0000-0001-8247-9403
Ashraf Oweis https://orcid.org/0000-0002-7581-2025
Haneen Mustafa https://orcid.org/0000-0003-0347-9654

Keywords

1. ADMA (asymmetric dimethylarginine), alpha klotho, chronic kidney disease (CKD), C-reactive protein (CRP);, 2. Ghrelin, gum Arabica, kisspeptin, nesfatin, obestatin, resistin;, 3. zinc alpha 2-glycoprtein, Alpha klotho, Ghrelin, C-reactive protein (CRP), Obestatin, Vascular endothelial growth factor (VEGF)

Abstract

AIM: A combinatorial multiplicity of molecular blood markers were assessed using ELISA colorimetric determinations in this prospective cohort study of the impact of guar gum arabica (GA) use on kidney function parameters of chronic kidney disease (CKD) in consumers (cases) vs. non consumers (age- and CKD stage- matched controls). RESULTS: Mean age of study participants was 68.12 (±SD 10) years with homogenous sex distribution in both study arms and comparable levels of eGFR, sCr, ESR, CRP, HbA1c, FPG, UA and fasting lipid profiling parameters (P value >0.05). Consistently in study population of recruits; mean CKD duration was 6.94 years (±SD 7.8) and CKD stage IV (37.6% of total study population) was of predominant incidence, followed by stages IIIa and IIIb (20.4% and 19.4%, respectively). Despite the negative glucosuria in 75% of CKD patients; hypertension (92.5%), dyslipidemia (64.8%) and diabetes mellitus (54.8%) were prevalent in a descending order of predominance. GA consumption mean duration was 1.3±1.1 (range 0.25-6) years with a mean dose of 1.7±1.0 (range 0.5-6) spoons per day. Substantially plasma concentrations of resistin (P value =0.047), and nesfatin-1 in cases were substantially greater (P value =0.005) but obestatin (P value =0.018), kisspeptin (P value =0.006), and vascular endothelial growth factor (VEGF) (P value =0.003) were found of pronouncedly lower blood levels in cases in comparison to those of controls. Invariably, human asymmetric dimethylarginine (ADMA), zinc alpha 2-glycoprtein, alpha klotho, ghrelin, and C-reactive protein (CRP) lacked any significant discrepancies in plasma levels in cases vs. those of controls (P value >0.05). In CKD cases on GA modality, ghrelin had substantial inverse correlations with dialysis duration, FBS and uric acid in CKD cases. Pronounced proportional associations of sCr levels were found with ghrelin, hsCRP and resistin in the same pool of cases. eGFR disproportionally correlated with cases’ hsCRP and resistin. In GA-naïve-CKD controls; sCr related proportionally and significantly with asymmetric dimethylarginine (ADMA) and Zinc alpha 2-glycoprtein. CONCLUSIVELY: interventional studies are much justifiably needed.

Abstract 65 | PDF Downloads 30

References

1. (a).Cheung WW, Mak RH. Ghrelin in chronic kidney disease. International Journal of Peptides. 2010; 2010: 567343. https://
doi.org/10.1155/ 2010/567343: (b) Castillo-Rodríguez E, Pizarro-Sánchez S, Sanz AB, et al., Inflammatory Cytokines as Uremic
Toxins. Toxins (Basel). 2017; 23:9(4). pii: E114. https://doi.org/10. 3390/toxins9040114; (c) Rico-Fontalvo J, Daza Arnedo R,
Raad Sarabia M, et al., Urinary proteome in diabetic kidney disease: state of the art. Colombian Journal of Nephrology (Revista
Colombiana de Nefrología). 2021; 8(3): e546. https://doi.org/ 10.22265/ acnef.8.3.546; (d).Rico-Fontalvo J, Aroca G, Cabrales
J, et al., Molecular Mechanisms of Diabetic Kidney Disease. International Journal of Molecular Sciences. 2022; 23(15):8668.
https://doi.org/10.33 90/ijms23158668; (e).Rico-Fontalvo J, Aroca-Martínez G, Daza-Arnedo R, et al., Novel Biomarkers of
Diabetic Kidney Disease. Biomolecules. 2023; 13(4):633. https://doi.org/10.3390/biom13040633.
2. Sargent HJ, Elliott J, Jepson RE. The new age of renal biomarkers: does SDMA solve all of our problems? J Small Anim Pract.
2021; 62(2):71-81. https://doi.org/10.1111/jsap.13236 3. (a). Coca SG, Nadkarni GN, Huang Y, et al., Plasma Biomarkers and Kidney Function Decline in Early and Established
Diabetic Kidney Disease. Journal of the American Society of Nephrology. 2017; 28(9): 2786-2793. https://doi.org/10.1681/
ASN.2016101101; (b). Colhoun HM, Marcovecchio ML. Biomarkers of diabetic kidney disease. Diabetologia. 2018; 61(5):996-
1011. https://doi.org/10.1007/ s00125-018-4567-5
4. (a). Castro-Sesquen YE,, Saraf SL, Gordeuk VR, Nekhai S, Jerebtsova M. Use of Multiple Urinary Biomarkers for Early Detection
of Chronic Kidney Disease in Sickle Cell Anemia Patients. Blood. 2020; 136 (Supplement 1): 30. https://doi.org/10.1182/
blood-2020-139500; (b). Castro-Sesquen YE, Saraf SL, Gordeuk VR, Nekhai S, Jerebtsova M. Use of multiple urinary biomarkers
for the early detection of chronic kidney disease in sickle cell anemia. Blood Advances. 2023; 7(11): 2606-2608. https://doi.
org/10.1182/ blood advances.2022008006
5. (a).Barutta F, Bellini S, Canepa S, et al., Novel biomarkers of diabetic kidney disease: current status and potential clinical
application. Acta Diabetologica. 2021; 58(7): 819-830. https://doi.org/10.1007/s00592-020-01656-9. Erratum in: Acta
Diabetologica. 2022; 59(3):439-441; (b). Feng ST, Wang B, Liu BC. [Research status and prospect of novel biomarkers for
diabetic kidney disease]. Chinese Journal of Medical History / Zhong Hua Yi Shi Za Zhi. 2021; 101(10):691-694. https://doi.
org/10.3760/cma.j.cn112137-20201110-03055; (c).Jung CY, Yoo TH. Pathophysiologic Mechanisms and Potential Biomarkers
in Diabetic Kidney Disease. Diabetes & Metabolism Journal. 2022(a); 46(2):181-197. https://doi.org/ 10.4093/ dmj.2021.0329;
(d).Jung CY, Yoo TH. Novel biomarkers for diabetic kidney disease. Kidney Research and Clinical Practice. 2022(b); 41(Suppl. 2):
S46-S62. https://doi.org/10.23876/j.krcp.22.084.
6. (a). Peng W, Adams J, Hickman L, Sibbritt DW. Complementary/alternative and conventional medicine use amongst menopausal
women: results from the Australian Longitudinal Study on Women’s Health. Maturitas. 2014; 79(3):340-342. https://doi.
org/10.1016/ j.maturitas.2014.08.002; (b). Sibbritt D, Davidson P, DiGiacomo M, Newton P, Adams J. Use of Complementary
and Alternative Medicine in Women with Heart Disease, Hypertension and Diabetes (from the Australian Longitudinal Study on
Women’s Health). American Journal of Cardiology. 2015; 115(12):1691-1695. https://doi.org/10.1016/j.amjcard.2015.03.014
7. Alshelleh SA, Alhawari H, Oweis AO, Alzoubi KH. Arabic gum as a natural therapeutic agent for diabetic patients with CKD: A
retrospective study. Electronic Journal of General Medicine. 2023; 20(4):em497. https://doi.org/10.29333/ejgm/1318
8. (a).Mahmoud MF, Diaa AA, Ahmed F. Evaluation of the efficacy of ginger, Arabic gum, and Boswellia in acute and chronic renal
failure. Renal Failure. 2012; 34(1):73-82. https://doi.org/10.3109/ 0886022X.2011.623563; (b).Nasir O, Umbach AT, Rexhepaj
R, et al., Effects of gum arabic (Acacia senegal) on renal function in diabetic mice. Kidney and Blood Pressure Research.
2012; 35(5):365-372. https://doi.org/10.1159/000336359; (c).Nasir O. Renal and extrarenal effects of gum arabic (Acacia
senegal)--what can be learned from animal experiments? Kidney and Blood Pressure Research. 2013; 37(4-5): 269-279.
https://doi.org/10.1159/000350152; (d). Ali BH, Al-Salam S, Al Za’abi M, et al., A New model for adenine-induced chronic
renal failure in mice, and the effect of gum acacia treatment thereon: comparison with rats. J Pharmacol Toxicol Meth. 2013a;
6; 8(3):384-93. https://doi.org/10.1016/ j.vascn.2013.05.001; (e). Ali BH, Al-Husseni I, Beegam S, et al., Effect of gum arabic on
oxidative stress and inflammation in adenine-induced chronic renal failure in rats. PLoS ONE 2013b; 8(2): e55242. https://doi.
org/10.1371/journal.pone.0055242; (f). Ali NE, Kaddam LA, Alkarib SY, et al., Gum Arabic (Acacia Senegal) Augmented Total
Antioxidant Capacity and Reduced C-Reactive Protein among Haemodialysis Patients in Phase II Trial. International Journal
of Nephrology. 2020; 2020:7214673. https://doi.org/10.1155/2020/7214673; (g). Al-Doaiss, A.A., Al-Shehri, M.A.Protective
effect of gum arabic/insulin against histological changes in testes of diabetic rats. International Journal of Morphology. 2020;
38(2):340-347. https://doi.org/10.4067/S0717-95022020000200340; (g). Ahmed AA, Essa MEA, Mollica A, et al., Gum Arabic
modifies anti-inflammatory cytokine in mice fed with high fat diet induced obesity. Bioactive Carbohydrates and Dietary
Fibre. 2021; 25:100258, https://doi.org/10.1016/j.bcdf. 2020.100258; (h). Gado AM, Aldahmash BA. Antioxidant effect of
Arabic gum against mercuric chloride-induced nephrotoxicity. Drug Design, Development and Therapy. 2013; 7:1245-1252.
https://doi.org/10.2147/DDDT.S50928; (i). Farman MS, Salman MI, Hamad HSH. Effect of Gum Arabic Administration on
Some Physiological and Biochemical Parameters in Chronic Renal Failure Patients. Systematic Reviews in Pharmacy. 2020;
11(6): 697-701. https://doi.org/10.31838/srp.2020.6.103; (j). Al-Baadani HH, Al-Mufarrej SI, Al-Garadi MA, et al., The use
of gum Arabic as a natural prebiotic in animals: A review. Animal Feed Science and Technology, 2021; 274:114894. https://
doi.org/ 10.1016/ j.anifeedsci.2021.114894; (k).Bejeshk MA, Aminizadeh AH, Rajizadeh MA, et al., The effect of combining
basil seeds and gum Arabic on the healing process of experimental acetic acid-induced ulcerative colitis in rats. Journal of
Traditional and Complementary Medicine. 2022; 12(6): 599-607. https://doi.org/10.1016/j.jtcme.2022. 08.001; (l). Naiel MAE,
Abd El-hameed SAA, Arisha AH, Negm SS. Gum Arabic-enriched diet modulates growth, antioxidant defenses, innate immune
response, intestinal microbiota and immune related genes expression in tilapia fish. Aquaculture 2022; 556: 738249. https://
doi.org/10.1016/j.aquaculture.2022.738249; (m).Siednamohammeddeen N, Badi R, Mohammeddeen T, Enan K, Saeed
A. The effect of gum Arabic supplementation on cathelicidin expression in monocyte derived macrophages in mice. BMC
Complementary Medicine and Therapies. 2022; 22(1):149. https://doi.org/10.1186/s12906-022-03627-9.
9. Yilmaz G, Sevinc C, Ustundag S, et al., The relationship between mean platelet volume and neutrophil/lymphocyte ratio with
inflammation and proteinuria in chronic kidney disease. Saudi Journal of Kidney Disease Transplantation 2017; 28(1):90-94.
https://doi.org/10.4103/1319-2442.198152.
10. Lokesh S, Green SR, Mathew TK, et al., A comparative study of platelet parameters in end stage renal disease patients
undergoing haemodialysis and healthy individuals. International Journal of Advances in Medicine. 2016; 3(3):559-563. https://doi.org/10.18203/2349-3933.ijam20162022
11. Landry T, Shookster D, Huang H. Circulating α-klotho regulates metabolism via distinct central and peripheral mechanisms.
Metabolism. 2021; 121: 154819. https://doi.org/10.1016/j.metabol.2021.154819
12. Wang Q, Su W, Shen Z, Wang R. Correlation between Soluble α-Klotho and Renal Function in Patients with Chronic Kidney Disease:
A Review and Meta-Analysis. BioMed Research International. 2018; 2018: 9481475. https://doi.org/10. 1155/2018/9481475
13. Rotondi, S., Pasquali, M., Tartaglione, L., et al., Soluble α-Klotho Serum Levels in Chronic Kidney Disease. International Journal
of Endocrinology. 2015; 2015: 872193. https://doi.org/10.1155/2015/872193
14. Xu Y, Peng H, Ke B. α-klotho and anemia in patients with chronic kidney disease patients: A new perspective. Experimental and
Therapeutic Medicine. 2017; 14(6):5691-5695.https://doi.org/10.3892/etm.2017.5287
15. Sauriasari R, Safitri DD, Azmi NU. Current updates on protein as biomarkers for diabetic kidney disease: a systematic review.
Therapeutic Advances in Endocrinology and Metabolism. 2021; 12. https://doi.org/10.1177/20420188211049612
16. Piwkowska A, Zdrojewski Ł, Heleniak Z, Dębska-Ślizień A. Novel Markers in Diabetic Kidney Disease-Current State and
Perspectives. Diagnostics (Basel). 2022; 12(5):1205. https://doi.org/10.3390/ diagnostics12051205
17. Yu LX, Li SS, Sha MY, Kong JW, Ye JM, Liu QF. The controversy of klotho as a potential biomarker in chronic kidney disease.
Frontiers in Pharmacology. 2022; 13: 931746. https://doi.org/10.3389/fphar.2022.931746
18. (a).Kim HR, Nam BY, Kim DW, et al., Circulating α-klotho levels in CKD and relationship to progression. American Journal of
Kidney Diseases. 2013; 61(6):899-909. https://doi.org/10.1053/j.ajkd. 2013.01.024; (b). Li SS, Sheng MJ, Sun ZY, Liang Y, Yu
LX, Liu QF. Upstream and downstream regulators of Klotho expression in chronic kidney disease. Metabolism. 2023; 142:
155530. https://doi.org/10.1016/ j.metabol.2023.155530; (c). Neyra JA, Hu MC, Moe OW. Klotho in Clinical Nephrology:
Diagnostic and Therapeutic Implications. Clinical Journal of the American Society of Nephrology. 2020; 16(1):162-176. https://
doi.org/10.2215/CJN.02840320
19. Antoniades C, Demosthenous M, Tousoulis D, et al., Role of asymmetrical dimethylarginine in inflammation-induced endothelial
dysfunction in human atherosclerosis. Hypertension. 2011; 58(1):93-98. https://doi.org/10.1161/HYPERTENSIONAHA.
110.168245.
20. Ueda S, Yamagishi S, Kaida Y, Okuda S. Asymmetric dimethylarginine may be a missing link between cardiovascular disease
and chronic kidney disease. Nephrology (Carlton). 2007; 12(6):582-590. https://doi.org/ 10. 1111/j.1440-1797.2007.00840.x
21. Jayachandran, I., Sundararajan, S., Venkatesan, S. et al., Asymmetric dimethylarginine (ADMA) accelerates renal cell fibrosis
under high glucose condition through NOX4/ROS/ERK signaling pathway. Scientific Reports. 2020; 10: 16005. https://doi.
org/10.1038/ s41598-020-72943-2
22. Mihout F, Shweke N, Bigé N, et al., Asymmetric dimethylarginine (ADMA) induces chronic kidney disease through a mechanism
involving collagen and TGF-β1 synthesis. Journal of Pathology. 2011; 223(1):37-45. https://doi.org/10.1002/path.2769
23. Sirich TL, Chertow GM. Asymmetric dimethylarginine, erythropoietin resistance, and anemia in CKD. Annals of Translational
Medicine. 2019; 7(Suppl. 3): S86. https://doi.org/10.21037/atm.2019.04.22.
24. Yokoro, M., Nakayama, Y., Yamagishi, S., et al., Asymmetric Dimethylarginine Contributes to the Impaired Response to
Erythropoietin in CKD-Anemia. Journal of the American Society of Nephrology: JASN. 2017; 28(9): 2670-2680. https://doi.
org/10.1681/ASN. 2016111184.
25. Choi, H.R., Lee, S.W., Jeon, DH., et al., Association between estimated glomerular filtration rate (eGFR) and asymmetric
dimethylarginine (ADMA) concentrations among the elderly in a rural community: a cross-sectional study. BMC Geriatrics.
2019; 19:370. https://doi.org/10.1186/s12877-019-1388-4
26. (a). Eiselt J, Rajdl D, Racek J, Vostrý M, Rulcová K, Wirth J. Asymmetric dimethylarginine and progression of chronic kidney
disease: a one-year follow-up study. Kidney & Blood Pressure Research. 2014; 39(1):50-57. https://doi.org/10.1159/000355776;
(b) Rysz J, Gluba-Brzózka A, Franczyk B, et al., A. Novel Biomarkers in the Diagnosis of Chronic Kidney Disease and the
Prediction of Its Outcome. International Journal of Molecular Sciences. 2017; 18(8): 1702. https://doi.org/10.3390/
ijms18081702;(c) Liu X, Xu X, Shang R, Chen Y. Asymmetric dimethylarginine (ADMA) as an important risk factor for the
increased cardiovascular diseases and heart failure in chronic kidney disease. Nitric Oxide. 2018; 78:113-120. https://doi.
org/10.1016/j.niox.2018.06.004; (d) Oliva-Damaso E, Oliva-Damaso N, Rodriguez-Esparragon F, et al., Asymmetric (ADMA)
and Symmetric (SDMA) Dimethylarginines in Chronic Kidney Disease: A Clinical Approach. International Journal of Molecular
Sciences. 2019; 20(15):3668. https://doi.org/10.3390/ijms20153668; (e) Kovács K, Karvaly GB, Farkas R, Vásárhelyi B. Az
aszimmetrikus és a szimmetrikus dimetilált arginin (ADMA/SDMA) klinikai és diagnosztikai jelentősége [Clinical and diagnostic
relevance of asymmetric and symmetric dimethyl arginine (ADMA/SDMA)]. Orvosi Hetilap (Hungarian Medical Journal). 2022;
163(13): 500-505. https://doi.org/10.1556/ 650.2022.32394.
27. Van Loenen MR, Geenen B, Arnoldussen IAC, Kiliaan AJ. Ghrelin as a prominent endocrine factor in stress-induced obesity.
Nutritional Neuroscience 2022; 25(7):1413-1424. https://doi.org/10.1080/1028415X.2020.1863740.
28. Rahimi S, Kazerouni F, Hedayati M, et al., Association of plasma ghrelin levels with diabetic nephropathy. Journal of Laboratory
Medicine. 2018; 42(1-2): 39-44. https://doi.org/10.1515/labmed-2017-0050
29. Wu W, Fan X, Yu Y, Wang Y. Maternal serum ratio of ghrelin to obestatin decreased in preeclampsia. Pregnancy Hypertension.
2015; 5(4):263-266.https://doi.org/10.1016/j.preghy.2015.09.002
30. Rusu CC, Racasan S, Moldovan D, et al., Ghrelin and acyl ghrelin levels are associated with inflammatory and nutritional markers and with cardiac and vascular dysfunction parameters in hemodialysis patients. International Urology and Nephrology. 2018;
50(10):1897-1906. https://doi.org/10.1007/s11255-018-1933-7
31. Borges N, Moraes C, Barros AF, et al., Acyl-ghrelin and obestatin plasma levels in different stages of chronic kidney disease.
Journal of Renal Nutrition. 2014; 24(2):100-104. https://doi.org/10.1053/j.jrn.2013.11.005
32. Monzani A, Perrone M, Prodam F, et al., Unacylated ghrelin and obestatin: promising biomarkers of protein energy wasting in
children with chronic kidney disease. Pediatric Nephrology. 2018; 33(4):661-672. https://doi.org/10.1007/s00467-017-3840-z.
33. Puthucheary Z, Tadié JM, Patel JJ. C-reactive protein in immunometabolism: spared from ‘paying the piper’. Intensive Care
Medicine. 2022; 48(1):103-105. https://doi.org/10.1007/s00134-021-06586-w.
34. Jun JE, Lee S-E, Lee Y-B, et al., Increase in serum albumin concentration is associated with prediabetes development and
progression to overt diabetes independently of metabolic syndrome. PLoS ONE. 2017; 12(4): e0176209. https://doi.org/
10.1371/journal.pone.0176209.
35. Cho H, Kim JH. Prevalence of microalbuminuria and its associated cardiometabolic risk factors in Korean youth: Data from the
Korea National Health and Nutrition Examination Survey. PLoS ONE. 2017; 12(6): e0178716. https://doi.org/10.1371/journal.
pone. 0178716.
36. 36. Bartz SK, Caldas MC, Tomsa A, Krishnamurthy R, Bacha F. Urine Albumin-to-Creatinine Ratio: A Marker of Early Endothelial
Dysfunction in Youth. Journal of Clinical Endocrinology and Metabolism. 2015; 100(9): 3393-3399. https://doi.org/10.1210/
JC.2015-2230
37. Cai X, Hu Z, Chen L, Han X, Ji L. Analysis of the Associations between Vitamin D and Albuminuria or β-Cell Function in Chinese Type
2 Diabetes. BioMed Research International. 2014; 2014: article ID 640909, 5 pages. https://doi.org/10. 1155/2014/640909.
38. Kim MH, Ahn JY, Song JE, et al., The C-Reactive Protein/Albumin Ratio as an Independent Predictor of Mortality in Patients
with Severe Sepsis or Septic Shock Treated with Early Goal-Directed Therapy. PLoS ONE. 2015; 10(7): e0132109. https://doi.
org/10.1371/journal.pone.0132109
39. Oh J, Kim SH, Park KN, et al., High-sensitivity C-reactive protein/albumin ratio as a predictor of in-hospital mortality in older
adults admitted to the emergency department. Clinical and Experimental Emergency Medicine. 2017; 4(1):19-24. https://doi.
org/ 10.15441/ceem.16.158.
40. (a).Ikeguchi M, Hanaki T, Endo K, et al., C-Reactive Protein/Albumin Ratio and Prognostic Nutritional Index Are Strong Prognostic
Indicators of Survival in Resected Pancreatic Ductal Adenocarcinoma. Journal of Pancreatic Cancer. 2017; 3(1): 31-36. https://
doi.org/10.1089/pancan.2017.0006; (b).Li YJ, Yang X, Zhang WB, Yi C, Wang F, Li P. Clinical implications of six inflammatory
biomarkers as prognostic indicators in Ewing sarcoma. Cancer Management. Research. 2017; 2017(9): 443–451. https://doi.
org/10.2147/ CMAR.S146827
41. Ghashut RA, Talwar D, Kinsella J, Duncan A, McMillan DC. The Effect of the Systemic Inflammatory Response on Plasma
Vitamin 25 (OH) D Concentrations Adjusted for Albumin. PLoS ONE. 2014; 9(3): e92614. https://doi.org/ 10.1371/journal.
pone.0092614.
42. Tsoutsouki J, Patel B, Comninos AN, Dhillo WS, Abbara A. Kisspeptin in the Prediction of Pregnancy Complications. Frontiers in
Endocrinology (Lausanne). 2022; 13: 942664. https://doi.org/10.3389/fendo.2022.942664.
43. Navarro VM. Metabolic regulation of kisspeptin - the link between energy balance and reproduction. Nature Reviews
Endocrinology. 2020; 16(8):407-420. https://doi.org/10.1038/s41574-020-0363-7.
44. Shoji I, Hirose T, Mori N, et al., Expression of kisspeptins and kisspeptin receptor in the kidney of chronic renal failure rats.
Peptides. 2010; 31(10):1920-1925. https://doi.org/10.1016/j.peptides.2010.07.001
45. Luedde M, Spehlmann ME, Hippe H-J, et al., Serum levels of kisspeptin are elevated in critically ill patients. PLoS ONE. 2018;
13(10): e0206064. https://doi.org/10.1371/journal.pone. 0206064.
46. Andreozzi F, Mannino GC, Mancuso E, Spiga R, Perticone F, Sesti G. Plasma kisspeptin levels are associated with insulin secretion
in nondiabetic individuals. PLoS ONE. 2017; 12(6): e0179834. https://doi.org/10.1371/ journal.pone.0179834
47. Wahab F, Atika B, Shahab M, Behr R. Kisspeptin signaling in the physiology and pathophysiology of the urogenital system.
Nature Reviews Urology 2016; 13(1):21-32. https://doi.org/10.1038/nrurol.2015.277
48. Lahane GP, Dhar A. Nesfatin-1 peptide protects rat renal epithelial cells against high glucose and H2O2 induced injury via inhibition
of oxidative stress, apoptosis, and fibrosis. Peptides. 2023; 165: 171013. https://doi.org/10.1016/ j.peptides.2023.171013.
49. Fan Z, Dong J, Mu Y, Liu X. Nesfatin-1 protects against diabetic cardiomyopathy in the streptozotocin-induced diabetic mouse model
via the p38-MAPK pathway. Bioengineered. 2022; 13(6): 14670-14681. https://doi.org/10. 1080/21655979.2022.2066748.
50. Goyal SG, Dhar A. Downregulation of nesfatin-1 expression in acute kidney injury in vivo in wistar rats and in vitro in cultured
cells. Life Sciences. 2022; 305: 120762. https://doi.org/10.1016/j.lfs.2022.120762.
51. Luo JJ, Wen FJ, Qiu D, Wang SZ. Nesfatin-1 in lipid metabolism and lipid-related diseases. Clinica Chimica Acta. 2021; 522:23-
30. https://doi.org/10.1016/j.cca.2021.08.005.
52. Irannejad A, Ghajar A, Afarideh M, et al., Association of peripheral nesfatin-1 with early stage diabetic nephropathy.
Pathophysiology. 2017; 24(1):17-22. https://doi.org/10.1016/j.pathophys.2016.12.001.
53. Villarreal D, Pradhan G, Zhou Y, Xue B, Sun. Y. Diverse and Complementary Effects of Ghrelin and Obestatin. Biomolecules.
2022; 12(4):517. https://doi.org/10. 3390/biom12040517.
54. Ren AJ, Guo ZF, Wang YK, et al., Obestatin, obesity and diabetes. Peptides. 2009; 30(2):439-44. https://doi.org/10.1016/j.peptides.2008.10.002.
55. Mafra D, Guebre-Egziabher F, Cleaud C, et al., Obestatin and ghrelin interplay in hemodialysis patients. Nutrition. 2010; 26(11-
12):1100-1104. https://doi.org/10.1016/j.nut.2009.09.003.
56. Axelsson J, Bergsten A, Qureshi AR, et al., Elevated resistin levels in chronic kidney disease are associated with decreased
glomerular filtration rate and inflammation, but not with insulin resistance. Kidney International. 2006; 69(3): 596-604.
https://doi.org/10.1038/ sj.ki.5000089.
57. Lichtenauer M, Jirak P, Paar V, Sipos B, Kopp K, Berezin AE. Heart Failure and Diabetes Mellitus: Biomarkers in Risk Stratification
and Prognostication. Applied Sciences. 2021; 11(10):4397. https://doi.org/10.3390/app11104397
58. Lee JH, Chan JL, Yiannakouris N, et al., Circulating Resistin Levels Are Not Associated with Obesity or Insulin Resistance in
Humans and Are Not Regulated by Fasting or Leptin Administration: Cross-Sectional and Interventional Studies in Normal,
Insulin-Resistant, and Diabetic Subjects. Journal of Clinical Endocrinology and Metabolism. 2003; 88(10): 4848–4856. https://
doi.org/10.1210/jc.2003-030519
59. Askin L, Abus S, Tanriverdi O. Resistin and Cardiovascular Disease: A Review of the Current Literature Regarding Clinical
and Pathological Relationships. Current Cardiology Reviews. 2022; 18(1): e290721195114. https://doi.org/10.2174/
1573403X17666210 729101120
60. Romejko K, Rymarz A, Szamotulska K, et al., Resistin Contribution to Cardiovascular Risk in Chronic Kidney Disease Male
Patients. Cells. 2023; 12(7):999. https://doi.org/10.3390/ cells12070999
61. Bonito B, Silva AP, Rato F, Santos N, Neves PL. Resistin as a predictor of cardiovascular hospital admissions and renal
deterioration in diabetic patients with chronic kidney disease. Journal of Diabetes Complications. 2019; 33(11): 107422.
https://doi.org/10.016/ j.jdiacomp.2019.107422
62. (a).Kim BS, Goligorsky MS. Role of VEGF in kidney development, microvascular maintenance and pathophysiology of renal
disease. Korean Journal of Internal Medicine. 2003; 18(2):65-75. https://doi.org/10.3904/ kjim.2003.18.2.65; (b).Kim YS. Is
VEGF a new therapeutic target for hypertension in chronic kidney disease? Kidney Research & Clinical Practice. 2013; 32(2):
49-51. https://doi.org/10.1016/j.krcp.2013.04.008
63. Shye M, Hanna RM, Patel SS, et al., Worsening proteinuria and renal function after intravitreal vascular endothelial growth
factor blockade for diabetic proliferative retinopathy. Clinical Kidney Journal. 2020; 13(6): 969-980. https://doi.org/10.1093/
ckj/sfaa049.
64. Engel JE, Williams E, Williams ML, Bidwell GL 3rd, Chade AR. Targeted VEGF (Vascular Endothelial Growth Factor) Therapy
Induces Long-Term Renal Recovery in Chronic Kidney Disease via Macrophage Polarization. Hypertension. 2019; 74(5):1113-
1123. https://doi.org/10.1161/HYPERTENSIONAHA.119.13469.
65. Ferrara N. Vascular Endothelial Growth Factor: Basic Science and Clinical Progress. Endocrine Reviews. 2004; 25(4): 581–611.
https://doi.org/10.1210/er.2003-0027
66. Liu Y, Hong K, Weng W, Huang S, Zhou T. Association of vascular endothelial growth factor (VEGF) protein levels and gene
polymorphism with the risk of chronic kidney disease. Libyan Journal of Medicine. 2023; 18(1): 2156675. https://doi.org/10.10
80/19932820.2022.2156675
67. Kikuchi R, Nakamura K, MacLauchlan S, et al., An antiangiogenic isoform of VEGF-A contributes to impaired vascularization in
peripheral artery disease. Nature Medicine. 2014; 20(12): 1464-1471. https://doi.org/10.1038/nm.3703.
68. Wei X, Liu X, Tan C, et al., Expression and Function of Zinc-α2-Glycoprotein. Neuroscience Bulletin. 2019; 35(3):540-550.
https://doi.org/10.1007/s12264-018-00332-x.
69. Leaños-Miranda A, Méndez-Aguilar F, Ramírez-Valenzuela KL, et al., Circulating angiogenic factors are related to the severity
of gestational hypertension and preeclampsia, and their adverse outcomes. Medicine (Baltimore). 2017; 96(4): e6005. https://
doi.org/10.1097/MD.000000 0000006005.
70. (a). Pelletier CC, Koppe L, Alix PM, et al., The Relationship between Renal Function and Plasma Concentration of the Cachectic
Factor Zinc-Alpha2-Glycoprotein (ZAG) in Adult Patients with Chronic Kidney Disease. PLoS ONE. 2014; 9(7): e103475.
https://doi.org/10.1371/journal.pone.0103475; (b).Leal VO, Lobo JC, Stockler-Pinto MB, et al., Is zinc-α2-glycoprotein a
cardiovascular protective factor for patients undergoing hemodialysis? Clinica Chimica Acta. 2012; 413(5–6): 616-619. https://
doi.org/10.1016/ j.cca.2011.12.002.
71. Bouchara A, Yi D, Pastural M, et al., Serum levels of the adipokine zinc-alpha2-glycoprotein (ZAG) predict mortality in
hemodialysis patients. Kidney International. 2018; 94(5): 983-992. https://doi.org/10.1016/j.kint. 2018.07.019.
72. Schmitt R. ZAG—a novel biomarker for cardiovascular risk in ESRD patients? Kidney International. 2018; 94(5): 858-860,
https://doi.org/10.1016/j.kint. 2018.08.010.
73. Liu M, Liu Z, Zhu H, et al., Serum Zinc-α2-Glycoprotein Levels in Patients with or without Coronary Artery Disease in Chinese
North Population. International Journal of Endocrinology. 2020; 2020:7864721. https://doi.org/10.1155/2020/7864721
74. Sörensen-Zender I, Bhayana S, Susnik N, et al., Zinc-α2-Glycoprotein Exerts Antifibrotic Effects in Kidney and Heart. Journal of
the American Society of Nephrology. 2015; 26(11): 2659-2668.https://doi.org/10.1681/ASN.2014050485.
75. Sörensen-Zender I, Rong S, Haller H, Schmitt R. The Therapeutic Potential of Zinc-Alpha2-Glycoprotein (AZGP1) in Fibrotic
Kidney Disease. International Journal of Molecular Sciences. 2022; 23(2):646. https://doi.org/10.3390/ijms23020646
76. Sonkar S K, Gupta A, Sonkar G K, et al. (2023) Zinc Alpha 2 Glycoprotein as an Early Biomarker of Diabetic Nephropathy in Type 2 Diabetes Mellitus Patients. Cureus 15(3): e36011. https://doi.org/10.7759/cureus.36011
77. (a). Ali BH. Does gum Arabic have an antioxidant action in rat kidney? Renal Failure. 2004; 26(1):1-3. https://doi.org/10.1081/
jdi-120028536; (b).Ali AA, Ali KE, Fadlalla AE, Khalid KE. The effects of gum arabic oral treatment on the metabolic profile
of chronic renal failure patients under regular haemodialysis in Central Sudan. Natural Product Research. 2008; 22 1:12-21.
https://doi.org/10.1080/14786410500463544; (c). Ali BH, Ziada A, Al Husseni I, Beegam S, Al-Ruqaishi B, Nemmar A. Effect
of Acacia gum on blood pressure in rats with adenine-induced chronic renal failure. Phytomedicine: International Journal
of Phytotherapy & Phytopharmacology. 2011; 18(13):1176-1180. https://doi.org/10.1016/j.phymed. 2011.03.005; (d). Ali
BH, AlZa’abi M, AlShukaili A, Nemmer A. High-mobility group box-1 protein in adenine-induced chronic renal failure and the
influence of gum arabic thereon. Physiology Research. 2015; 64:147-151. https://doi.org/10. 33549/physiolres.932759; (e). Ali
BH, Al Za’abi M, Al Suleimani Y, et al., Gum arabic reduces inflammation, oxidative, and nitrosative stress in the gastrointestinal
tract of mice with chronic kidney disease. Naunyn Schmiedebergs Archives of Pharmacology 2020; 393(8):1427-1436. https://
doi.org/10.1007/ s00210-020-01844-y
78. (a). Mohammed ME, Abbas AM, Badi RM, et al., Effect of Acacia senegal on TGF-β1 and vascular mediators in a rat model of
diabetic nephropathy. Archives of Physiology & Biochemistry. 2020; 23: 1-11. https://doi.org/10.1080/13813455.2020.17819
01; (b).Berezin, AE., Lichtenauer, M., Berezin, AA. Heart failure among patients with prediabetes and type 2 diabetes mellitus:
diagnostic and predictive biomarkers: a narrative review. Journal of Laboratory and Precision Medicine. 2022; 7:5 https://doi.
org/10.21037/jlpm-21-37; (c). Pandey A, Vaduganathan M, Patel KV, et al. Biomarker-Based Risk Prediction of Incident Heart
Failure in Pre-Diabetes and Diabetes. Journal of the American College of Cardiology (JACC): Heart Failure, 2021; 9(3):215-223.
https://doi.org/10.1016 /j.jchf.2020.10.013; (d).Wan EYF, Yu EYT, Chin WY, Et al., Burden of CKD and Cardiovascular Disease
on Life Expectancy and Health Service Utilization: a Cohort Study of Hong Kong Chinese Hypertensive Patients . Journal of
American Society of Nephrology: JASN. 2019; 30(10): 1991-1999. https://doi.org/10.1681/asn.2018101037; (e). Vallianou NG,
Mitesh S, Gkogkou A, Geladari E. Chronic Kidney Disease and Cardiovascular Disease: Is there Any Relationship? Current
Cardiovascular Reviews 2019; 15(1): 55-63. https://doi.org/10.2174/ 1573403x14666180711124825.
79. (a). Canki E, Kho E, Hoenderop JGJ. Urinary biomarkers in kidney disease. Clinica Chimica Acta; International Journal of
Clinical Chemistry. 2024; 555:117798. https://doi.org/10.1016/j.cca.2024.117798; (b).Le D, Chen J, Shlipak MG, et al.,
Plasma Biomarkers and Incident CKD Among Individuals Without Diabetes. Kidney Medicine. 2023; 5(11):100719. https://
doi.org/10.1016/ j.xkme.2023.100719; (c).Liu C, Debnath N, Mosoyan G, et al., Systematic Review and Meta-Analysis of
Plasma and Urine Biomarkers for CKD Outcomes. Journal of American Society of Nephrology: JASN 2022; 33 9:1657-1672.
https://doi.org/10.1681/asn.2022010098; (d). Franczyk B, Gluba-Brzózka A, Olszewski R, et al., miRNA biomarkers in renal
disease. International Urology & Nephrology. 2022; 54(3):575-588.https://doi.org/10.1007/s11255-021-02922-7; (e).Sandokji
I, Greenberg JH. Plasma and Urine Biomarkers of CKD: A Review of Findings in the CKiD Study. Seminars in Nephrology. 2021;
41(5):416-426. https://doi.org/10.1016/ j.semnephrol.2021.09.003.
80. (a).Al Suleimani YM, Al Za’abi M, Ramkumar A, et al., Influence of treatment with gum acacia on renal vascular responses
in a rat model of chronic kidney disease. European Reviews of Medicine & Pharmacology Sciences. 2015; 19 3:498-506.
PMID: 25720725; (b).Nasir O. Renal and extrarenal effects of gum arabic (Acacia senegal)--what can be learned from animal
experiments? Kidney & Blood Pressure Research. 2013; 37(4-5): 269-279. https://doi.org/10.1159/000350152; (c). Babiker
R, Merghani TH, Elmusharaf K, Badi RM, Lang F, Saeed AM. Effects of Gum Arabic ingestion on body mass index and body fat
percentage in healthy adult females: two-arm randomized, placebo controlled, double-blind trial. Nutrition Journal. 2012;
11:111. https://doi.org/10.1186/1475-2891-11-111.
81. (a).Coca SG, Nadkarni GN, Huang Y, et al., Plasma Biomarkers and Kidney Function Decline in Early and Established Diabetic
Kidney Disease. Journal of American Society of Nephrology. 2017; 28(9): 2786-2793. https://doi.org/10.1681/ASN.2016101101;
(b). Paul P, Kaul R, Chaari A. Renal Health Improvement in Diabetes through Microbiome Modulation of the Gut-Kidney Axis
with Biotics: A Systematic and Narrative Review of Randomized Controlled Trials. International Journal of Molecular Sciences.
2022; 23(23):14838. https://doi.org/10.3390/ ijms232314838; (c).Coyne MJ, Schultze AE, McCrann DJ 3rd, et al., Evaluation
of renal injury and function biomarkers, including symmetric dimethylarginine (SDMA), in the rat passive Heymann nephritis
(PHN) model. PLoS One. 2022; 17(5):e0269085. https://doi.org/10.1371/journal.pone.0269085; (d).Safdar OY, Baghdadi RM,
Alahmadi SA, Fakieh BE, Algaydi AM. Sickle cell nephropathy: A review of novel biomarkers and their potential roles in early
detection of renal involvement. World Journal of Clinical Pediatrics. 2022; 11(1):14-26. https://doi.org/10.5409/ wjcp.v11.
i1.14.
82. Xie Z, Xiao X. Novel biomarkers and therapeutic approaches for diabetic retinopathy and nephropathy: Recent progress and
future perspectives. Frontiers of Endocrinology. 2022; 13:1065856. https://doi.org/10.3389/fendo.2022. 1065856
83. (a). Toth-Manikowski S, Atta MG. Diabetic Kidney Disease: Pathophysiology and Therapeutic Targets. Journal of Diabetes
Research. 2015; 2015: 697010. https://doi.org/10.1155/2015/697010; (b).Wu TH, Chang LH, Chu CH, et al. Soluble tumor
necrosis factor receptor 2 is associated with progressive diabetic kidney disease in patients with type 2 diabetes mellitus. PLoS
One. 2022; 17(4):e0266854. https://doi.org/10.1371/ journal.pone.0266854
84. (a). Gohda T, Kamei N, Koshida T, et al.,. Circulating kidney injury molecule-1 as a biomarker of renal parameters in diabetic
kidney disease. Journal of Diabetes Investigation. 2020; 11(2):435-440. https://doi.org/10.1111/jdi.13139; (b). Gohda T, Kamei
N, Kubota M, et al., Fractional excretion of tumor necrosis factor receptor 1 and 2 in patients with type 2 diabetes and normal renal function. Journal of Diabetes Investigation. 2021; 12(3): 382-389. https://doi.org/ 10.1111/jdi.13351; (c). Kim MK, Kim
DM. Current status of diabetic kidney disease and latest trends in management. Journal of Diabetes Investigation. 2022;
13(12):1961-1962. https://doi.org/10.1111/jdi.13895.
85. Puthumana J, Thiessen-Philbrook H, Xu L, et al., Biomarkers of inflammation and repair in kidney disease progression. Journal
of Clinical Investigation. 2021; 131(3):e139927. https://doi.org/10.1172/ JCI139927.
86. Nekhai S, Lin X, Soni S, et al., Urinary Kringle Domain-Containing Protein HGFL: A Validated Biomarker of Early Sickle Cell Anemia-
Associated Kidney Disease. American Journal of Nephrology. 2021; 52(7): 582-587. https://doi.org/10.1159/000517056
87. Yamakado S, Cho H, Inada M, et al., Urinary adiponectin as a new diagnostic index for chronic kidney disease due to diabetic
nephropathy. BMJ Open Diabetes Research Care. 2019; 7(1):e000661. https://doi.org/10.1136/bmjdrc-2019-000661