Preliminary investigation of Haloxylon persicum and Heliotropium bacciferum plants from the United Arab Emirates for possible development of new drugs

Main Article Content

Mughair Abdul Aziz
Kandhan Karthishwaran
Chythra Somanathan Nair
Ramya Manoharan
Drishya Nishanth
Radhakrishnan Subramanian
Khaled Masmoudi
Mohammed Alyafei
Abdul Jaleel

Keywords

Drug development, Phytochemicals, Antioxidant, haloxylon persicum, haloxylon bacciferum

Abstract

Natural antioxidants from plants can counteract various free radicals that contribute to human diseases. In this study, we aimed to explore the phytochemicals, mineral composition, and antioxidant and free radical scavenging activities of methanolic extracts derived from Haloxylon and Heliotropium species, specifically Haloxylon persicum and Heliotropium bacciferum, which are prevalent in arid regions. We conducted phytochemical screening, analyzed the macro- and micro-elements in the leaf extracts, and performed four different in vitro antioxidant assays (ABTS, DPPH, superoxide anions, and hydroxyl radicals) to investigate the scavenging properties of these plant extracts. Both H. persicum and H. bacciferum extracts contained flavonoids, tannins, phenols, and cardiac glycosides, with H. persicum containing steroids and H. bacciferum containing alkaloids, saponins, and terpenoids. Mineral analysis revealed significant levels of macro- and micro-elements in the studied Haloxylon and Helitropium species. H. persicum exhibited high amounts of Mg (12.16 mg/kg) and H. bacciferum had elevated levels of Ca (38.45 mg/kg) and S (6.73 mg/kg). Micronutrient content was particularly high in H. persicum, with varied composition of Cr (8.46 mg/kg), Ni (8.06 mg/kg), Pb (3.55 mg/kg), and Zn (60.73 mg/kg). Antioxidant activity analysis demonstrated that the methanolic extract of H. bacciferum displayed efficient scavenging activity against ABTS, DPPH, and hydroxyl radicals at a concentration of 160 µg/ml, inhibiting them by 81.23%, 83%, and 83.46%, respectively, with IC50 values of 5.9 µg/ml, 26.16 µg/ml, and 25.82 µg/ml, respectively. Meanwhile, the methanolic extract of H. persicum exhibited the highest superoxide anion scavenging activity, at 160 µg/ml, with an inhibition of 80.06% and an IC50 value of 26.03 µg/ml. Methanolic extracts from the leaves of H. persicum and H. bacciferum are promising sources of natural antioxidants, offering the potential for effective free radical inhibitors in plant-based pharmaceutical products.

Abstract 123 | PDF Downloads 43

References

1. Chaudhary, P., Janmeda, P., Docea, A. O., Yeskaliyeva, B., Abdull Razis, A. F., Modu, B., ... & Sharifi-Rad, J. (2023). Oxidative
stress, free radicals and antioxidants: Potential crosstalk in the pathophysiology of human diseases. Frontiers in chemistry, 11,
1158198.
2. Jomova, K., Raptova, R., Alomar, S. Y., Alwasel, S. H., Nepovimova, E., Kuca, K., & Valko, M. (2023). Reactive oxygen species,
toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Archives of toxicology, 97(10), 2499-2574
3. Abdelmola, A. O., Bahri, A., Abuallut, I., Refaei, B. A., Hakami, W. K., Abutaleb, A. K., ... & Aldarbi, K. F. (2021). Prevalence,
knowledge, and perception about the use of herbal medicines jazan-Saudi Arabia. Journal of Family Medicine and Primary
Care, 10(6), 2386-2393.
4. Oloya, B., Namukobe, J., Ssengooba, W., Afayoa, M., & Byamukama, R. (2022). Phytochemical screening, antimycobacterial
activity and acute toxicity of crude extracts of selected medicinal plant species used locally in the treatment of tuberculosis in
Uganda. Tropical medicine and health, 50(1), 16.
5. Nadeem, M., Rikhari, H. C., Kumar, A., Palni, L. M. S., & Nandi, S. K. (2002). Taxol content in the bark of Himalayan Yew in
relation to tree age and sex. Phytochemistry, 60(6), 627-631
6. Singh, N., & Sharma, B. (2018). Toxicological effects of berberine and sanguinarine. Frontiers in molecular biosciences, 5, 21.
7. Czechowski, T., Rinaldi, M. A., Famodimu, M. T., Van Veelen, M., Larson, T. R., Winzer, T., ... & Graham, I. A. (2019). Flavonoid
versus artemisinin anti-malarial activity in Artemisia annua whole-leaf extracts. Frontiers in plant science, 10, 984.
8. Mattioli, R., Mosca, L., Sánchez-Lamar, A., Tempera, I., & Hausmann, R. (2018). Natural bioactive compounds acting against
oxidative stress in chronic, degenerative, and infectious diseases. Oxidative medicine and cellular longevity, 3894381.
9. Sun, W., & Shahrajabian, M. H. (2023). Therapeutic potential of phenolic compounds in medicinal plants—Natural health
products for human health. Molecules, 28(4), 1845.
10. Masmoudi, K., Aziz, M. A., Shamim, A., Sabeem, M., Hazzouri, K. M., & Amiri, K. M. (2021). Metagenomics of beneficial
microbes in abiotic stress tolerance of date palm. In The Date Palm Genome, Vol. 2: Omics and Molecular Breeding (pp. 203-
214). Cham: Springer International Publishing.
11. Al-Khalifah, N. S., & Shanavaskhan, A. E. (2007). On the distribution, status and phenology of Ghada (Haloxylon, persicum
Bunge) in the Arabian Peninsula. Tropical Ecology, 48(1), 51-60.
12. Aïssaoui, H., Mencherini, T., Esposito, T., De Tommasi, N., Gazzerro, P., Benayache, S., ... & Mekkiou, R. (2019). Heliotropium
bacciferum Forssk.(Boraginaceae) extracts: chemical constituents, antioxidant activity and cytotoxic effect in human cancer
cell lines. Natural product research, 33(12), 1813-1818.
13. Wolfenden, B. S., & Willson, R. L. (1982). Radical-cations as reference chromogens in kinetic studies of ono-electron transfer
reactions: pulse radiolysis studies of 2, 2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate). Journal of the Chemical Society,
Perkin Transactions 2, (7), 805-812.
14. Brand-Williams, W., Cuvelier, M. E., & Berset, C. L. W. T. (1995). Use of a free radical method to evaluate antioxidant activity. LWTFood
science and Technology, 28(1), 25-30.
15. Nishikimi, M., Rao, N. A., & Yagi, K. (1972). The occurrence of superoxide anion in the reaction of reduced phenazine
methosulfate and molecular oxygen. Biochemical and biophysical research communications, 46(2), 849-854.ytobiotic plants
from west Cameroon. Journal of Agriculture and Food Research, 3, 100105.
16. Halliwell, B., Gutteridge, J. M., & Aruoma, O. I. (1987). The deoxyribose method: a simple “test-tube” assay for determination
of rate constants for reactions of hydroxyl radicals. Analytical biochemistry, 165(1), 215-219.
17. Sharmila, B. G., Kumar, G., & Rajasekara, P. M. (2007). Cholesterol lowering activity of the aqueous fruit extract of Trichosanthes
dioica Roxb. in normal and streptozotocin diabetic rats. Journal of Clinical and Diagnostic Research, 1(6), 561-569.
18. Sadat, A. B. D. U. L., Hore, M., Chakraborty, K. A. U. S. H. I. K., & Roy, S. U. B. H. R. A. J. Y. O. T. I. (2017). Phytochemical analysis
and antioxidant activity of methanolic extract of leaves of Corchorus olitorius. International Journal of Current Pharmaceutical
Research, 9(5), 59-63.
19. Webb, D. (2013). Phytochemicals’ role in good health. Today’s Dietitian, 15(9),70.
20. Abdul Aziz, M., & Masmoudi, K. (2023). Insights into the transcriptomics of crop wild relatives to unravel the salinity stress
adaptive mechanisms. International journal of molecular sciences, 24(12), 9813.
21. Tize T, Ngatsi PZ, Lontsi Dida SL, Njome Toka A, Songwe Atindo T, Ndongo EB’a, Sale Essome C, Ndongo B (2024) Bio-effectiveness
of Balanites aegyptiaca (L.) Del. seed extracts against Colletotrichum capsici (Syd.) Butler & Bisby causal agent of anthracnose
in cowpeas (Vigna unguiculata (L.) Walps.) under natural conditions. Innovations in Agriculture 7: 1-9. https://doi.org/10.3897/
ia.2024.131803
22. Oloya, B., Namukobe, J., Heydenreich, M., Ssengooba, W., Schmidt, B., & Byamukama, R. (2021). Antimycobacterial Activity
of the Extract and Isolated Compounds From the Stem Bark of Zanthoxylum leprieurii Guill. and Perr. Natural Product
Communications, 16(8), 1934578X211035851.
23. Bunalema, L., Fotso, G. W., Waako, P., Tabuti, J., & Yeboah, S. O. (2017). Potential of Zanthoxylum leprieurii as a source of active
compounds against drug resistant Mycobacterium tuberculosis. BMC Complementary and Alternative Medicine, 17, 1-6. 24. Mo, S., Krunic, A., Chlipala, G., & Orjala, J. (2009). Antimicrobial ambiguine isonitriles from the cyanobacterium Fischerella
ambigua. Journal of natural products, 72(5), 894-899.
25. El Sayed, K. A., Hamann, M. T., Abd El-Rahman, H. A., & Zaghloul, A. M. (1998). New pyrrole alkaloids from Solanum
sodomaeum. Journal of Natural Products, 61(6), 848-850.
26. ElSohly, H. N., Danner, S., Li, X. C., Nimrod, A. C., & Clark, A. M. (1999). New antimycobacterial saponin from Colubrina
retusa. Journal of Natural Products, 62(9), 1341-1342.
27. Asres, K., Bucar, F., Edelsbrunner, S., Kartnig, T., Höger, G., & Thiel, W. (2001). Investigations on antimycobacterial activity of
some Ethiopian medicinal plants. Phytotherapy Research, 15(4), 323-326.
28. Begum, S., Wahab, A., & Siddiqui, B. S. (2008). Antimycobacterial activity of flavonoids from Lantana camara Linn. Natural
Product Research, 22(6), 467-470.
29. Koysomboon, S., Van Altena, I., Kato, S., & Chantrapromma, K. (2006). Antimycobacterial flavonoids from Derris
indica. Phytochemistry, 67(10), 1034-1040.
30. Truong, N. B., Pham, C. V., Doan, H. T., Nguyen, H. V., Nguyen, C. M., Nguyen, H. T., ... & Chau, M. V. (2011). Antituberculosis
cycloartane triterpenoids from Radermachera boniana. Journal of natural products, 74(5), 1318-1322.
31. Serdar, M. A., Bakir, F., Haşimi, A., Çelik, T., Akin, O., Kenar, L., ... & Yildirimkaya, M. (2009). Trace and toxic element patterns in
nonsmoker patients with noninsulin-dependent diabetes mellitus, impaired glucose tolerance, and fasting glucose. International
journal of diabetes in developing countries, 29(1), 35.
32. Ogbuewu, I. P., Jiwuba, P. D., Ezeokeke, C. T., Uchegbu, M. C., Okoli, I. C., & Iloeje, M. U. (2014). Evaluation of phytochemical
and nutritional composition of ginger rhizome powder. International Journal of Agriculture and Rural Development, 17(1),
1663-1670.
33. Ndomou, S. C. H., Djikeng, F. T., Teboukeu, G. B., Doungue, H. T., Foffe, H. A. K., Tiwo, C. T., & Womeni, H. M. (2021). Nutritional
value, phytochemical content, and antioxidant activity of three ph
34. Chaturvedi, U. C., Shrivastava, R., & Upreti, R. K. (2004). Viral infections and trace elements: a complex interaction. Current
science, 1536-1554.
35. Hotz, C., and Brown, K. H. (2004). Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr
Bull,25:194–195
36. Annan, K., Kojo, A. I., Cindy, A., Samuel, A. N., & Tunkumgnen, B. M. (2010). Profile of heavy metals in some medicinal plants
from Ghana commonly used as components of herbal formulations. Pharmacognosy Research, 2(1), 41.
37. Agomuo, E. N. (2011). Proximate, phytochemical and mineral element analysis of the sclerotium of Pleurotus tuber-regium. Int.
Sci. Res. J, 3, 104-107.
38. Agomuo, E. N. (2011). Proximate, phytochemical and mineral element analysis of the sclerotium of Pleurotus tuber-regium. Int.
Sci. Res. J, 3, 104-107.
39. Rahimtula, A. D., Béréziat, J. C., Bussacchini-Griot, V., & Bartsch, H. (1988). Lipid peroxidation as a possible cause of ochratoxin
A toxicity. Biochemical pharmacology, 37(23), 4469-4477.
40. More, G. K., & Makola, R. T. (2020). In-vitro analysis of free radical scavenging activities and suppression of LPS-induced ROS
production in macrophage cells by Solanum sisymbriifolium extracts. Scientific reports, 10(1), 6493.
41. Jalil Sarghaleh, S., Alizadeh Behbahani, B., Hojjati, M., Vasiee, A., & Noshad, M. (2023). Evaluation of the constituent compounds,
antioxidant, anticancer, and antimicrobial potential of Prangos ferulacea plant extract and its effect on Listeria monocytogenes
virulence gene expression. Frontiers in microbiology, 14, 1202228
42. Bruno, M., Ilardi, V., Lupidi, G., Quassinti, L., Bramucci, M., Fiorini, D., ... & Maggi, F. (2021). Composition and biological activities
of the essential oil from a Sicilian accession of Prangos ferulacea (L.) Lindl. Natural Product Research, 35(5), 733-743.
43. Labiad, M. H., Harhar, H., Ghanimi, A., & Tabyaoui, M. (2017). Phytochemical screening and antioxidant activity of Moroccan
Thymus satureioïdes extracts. Journal of Materials and Environmental Sciences, 8(6), 2132-2139.
44. Akhila, B., Vijayalakshmi, R., Hemalatha, G., & Arunkumar, R. (2018). Development and evaluation of functional property of
guava leaf based herbal tea. Journal of Pharmacognosy and Phytochemistry, 7(3), 3036-3039.
45. Kaur, R., Aslam, L., Kapoor, N., & Mahajan, R. (2018). Phytochemical analysis and antioxidant activity of wild pomegranate
collected from patnitop, Jammu and Kashmir. Biosciences biotechnology research asia, 15(2), 335-341.
46. Lalhminghlui, K., & Jagetia, G. C. (2018). Evaluation of the free-radical scavenging and antioxidant activities of Chilauni, Schima
wallichii Korth in vitro. Future science OA, 4(2), FSO272.
47. Robak, J., & Gryglewski, R. J. (1988). Flavonoids are scavengers of superoxide anions. Biochemical pharmacology, 37(5), 837-
841.
48. Hazra, B., Biswas, S., & Mandal, N. (2008). Antioxidant and free radical scavenging activity of Spondias pinnata. BMC
complementary and Alternative Medicine, 8, 1-10.
49. Sindhu, T., Rajamanikandan, S., & Srinivasan, P. (2014). In vitro antioxidant and antibacterial activities of methanol extract of
Kyllinga nemoralis. Indian journal of pharmaceutical sciences, 76(2), 170.
50. Abdul Aziz, M., Sabeem, M., Mullath, S. K., Brini, F., & Masmoudi, K. (2021). Plant group II LEA proteins: intrinsically disordered
structure for multiple functions in response to environmental stresses. Biomolecules, 11(11), 1662.
51. Saeed, N., Khan, M. R., & Shabbir, M. (2012). Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC complementary and alternative medicine, 12, 1-12.
52. Sowndhararajan, K., & Kang, S. C. (2013). Free radical scavenging activity from different extracts of leaves of Bauhinia vahlii
Wight & Arn. Saudi journal of biological sciences, 20(4), 319-325
53. Surveswaran, S., Cai, Y. Z., Corke, H., & Sun, M. (2007). Systematic evaluation of natural phenolic antioxidants from 133 Indian
medicinal plants. Food chemistry, 102(3), 938-953.
54. Wojdyło, A., Oszmiański, J., & Czemerys, R. (2007). Antioxidant activity and phenolic compounds in 32 selected herbs. Food
chemistry, 105(3), 940-949.
55. Cai, Y., Luo, Q., Sun, M., & Corke, H. (2004). Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal
plants associated with anticancer. Life sciences, 74(17), 2157-2184.
56. Prommajak, T., Kim, S. M., Pan, C. H., Kim, S. M., Surawang, S., & Rattanapanone, N. (2015). Prediction of antioxidant capacity
of Thai vegetable extracts by infrared spectroscopy. Chiang Mai J. Sci, 42(3), 657-668.
57. Abdul Aziz, M., Sabeem, M., Mullath, S. K., Brini, F., & Masmoudi, K. (2021). Plant group II LEA proteins: intrinsically disordered
structure for multiple functions in response to environmental stresses. Biomolecules, 11(11), 1662.
58. Aziz, M. A., & Masmoudi, K. (2023). Multifaceted roles of versatile LEA-II proteins in plants. In Multiple Abiotic Stress Tolerances
in Higher Plants (pp. 143-161). CRC Press.
59. Harborne, J. B. (1998). Textbook of phytochemical methods. A guide to modern techniques of plant analysis. 5th Edition,
Chapman and Hall Ltd, London, pp. 21–72.
60. Sabeem, M., Abdul Aziz, M., Mullath, S. K., Brini, F., Rouached, H., & Masmoudi, K. (2022). Enhancing growth and salinity stress
tolerance of date palm using Piriformospora indica. Frontiers in Plant Science, 13, 1037273.

Most read articles by the same author(s)