Skeletal effects of nilotinib on prepubertal and pubertal rats

Main Article Content

Yasin I. Tayem
Wael A. Nasr El-Din
Aisha N. Rashid
Sindhan Veeramuthu
Manal A. Othman

Keywords

Nilotinib, Bone, Calcification, Puberty

Abstract

Background: Nilotinib belongs to a group of anti-cancer drugs called tyrosine kinase inhibitors (TKIs), which are currently the mainstay treatment of chronic myeloid leukemia (CML). Objectives: In this study, we aimed to investigate the effects of this drug on bones around puberty in vivo. Methods: Juvenile male Wistar rats were divided to three groups and were treated orally once a day. Group 1 was administered vehicle; group 2 was administered nilotinib at a low-dose (30.85 mg/kg) and group 3 was treated with a high-dose (41.13 mg/kg). The treatment continued from week 4 until week 7 of age (pre-pubertal and pubertal life). Methods: Serum calcium, insulin-like growth factor-1 (IGF-1) and procollagen type I (PINP) were measured by enzyme-linked immunosorbent assay (ELISA). Femur bone was collected for histopathological evaluation using Hematoxylin & Eosin stain, and Masson's trichrome (MTC) staining. Immunohistochemistry was performed, using the bone cellular markers antiosteopontin (OPN) and antitartrate-resistant acid phosphatase (TRAP). Results: Serum Calcium, IGF-1 and PINP declined in a dose-dependent manner (p < 0.05). Histopathological evaluation revealed dose-dependent degeneration of bone lamellae and disruption and disorganization of cellular components. Moreover, the study revealed a decrease in collagen, decrease in OPN, and increase in TRAP immunostaining. Conclusion: Nilotinib had deleterious skeletal effects around puberty, possibly requiring long-term monitoring of bone growth and mineralization.

Abstract 88 | PDF Downloads 38

References

1. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM, Lydon NB, Kantarjian H, Capdeville R, Ohno-Jones S, Sawyers CL. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med. 2001 Apr 5;344(14):1031-7. https://doi.org/10.1056/NEJM200104053441401
2. Vener C, Banzi R, Ambrogi F, Ferrero A, Saglio G, Pravettoni G, Sant M. First-line imatinib vs second- and third-generation TKIs for chronic-phase CML: a systematic review and meta-analysis. Blood Adv. 2020 Jun 23;4(12):2723-2735. https://doi.org/10.1182/bloodadvances.2019001329
3. Heim D, Ebnöther M, Favre G. Chronische Myeloische Leukämie – Update 2020, [Chronic myeloid leukemia - update 2020]. Ther Umsch. 2019;76(9):503-509. https://doi.org/10.1024/0040-5930/a001124
4. Ciftciler R, Haznedaroglu IC. Tailored tyrosine kinase inhibitor (TKI) treatment of chronic myeloid leukemia (CML) based on current evidence. Eur Rev Med Pharmacol Sci. 2021 Dec;25(24):7787-7798. https://doi.org/10.26355/eurrev_202112_27625
5. Shyam Sunder S, Sharma UC, Pokharel S. Adverse effects of tyrosine kinase inhibitors in cancer therapy: pathophysiology, mechanisms and clinical management. Signal Transduct Target Ther. 2023 Jul 7;8(1):262. https://doi.org/10.1038/s41392-023-01469-6
6. Leak S, Horne GA, Copland M. Targeting BCR-ABL1-positive leukaemias: a review article. Camb Prism Precis Med. 2023 Mar 6;1:e21. https://doi.org/10.1017/pcm.2023.9
7. Hartmann JT, Haap M, Kopp HG, Lipp HP. Tyrosine kinase inhibitors - a review on pharmacology, metabolism and side effects. Curr Drug Metab. 2009 Jun;10(5):470-81. https://doi.org/10.2174/138920009788897975
8. Tauer JT, Hofbauer LC, Jung R, Gerdes S, Glauche I, Erben RG, Suttorp M. Impact of long-term exposure to the tyrosine kinase inhibitor imatinib on the skeleton of growing rats. PLoS One. 2015 Jun 24;10(6):e0131192. https://doi.org/10.1371/journal.pone.0131192
9. Vandyke K, Dewar AL, Diamond P, Fitter S, Schultz CG, Sims NA, Zannettino AC. The tyrosine kinase inhibitor dasatinib dysregulates bone remodeling through inhibition of osteoclasts in vivo. J Bone Miner Res. 2010 Aug;25(8):1759-70. https://doi.org/10.1002/jbmr.85
10. Kantarjian HM, Hughes TP, Larson RA, Kim DW, Issaragrisil S, le Coutre P, Etienne G, Boquimpani C, Pasquini R, Clark RE, Dubruille V, Flinn IW, Kyrcz-Krzemien S, Medras E, Zanichelli M, Bendit I, Cacciatore S, Titorenko K, Aimone P, Saglio G, Hochhaus A. Long-term outcomes with frontline nilotinib versus imatinib in newly diagnosed chronic myeloid leukemia in chronic phase: ENESTnd 10-year analysis. Leukemia. 2021 Feb;35(2):440-453. https://doi.org/10.1038/s41375-020-01111-2
11. Li S, He J, Zhang X, Cai Y, Liu J, Nie X, Shi L. Cardiovascular adverse events in chronic myeloid leukemia patients treated with nilotinib or imatinib: A systematic review, meta-analysis and integrative bioinformatics analysis. Front Cardiovasc Med. 2022 Nov 8;9:966182. https://doi.org/10.3389/fcvm.2022.966182
12. Kroschwald LM, Tauer JT, Kroschwald SI, Suttorp M, Wiedenfeld A, Beissert S, Bauer A, Rauner M. Imatinib mesylate and nilotinib decrease synthesis of bone matrix in vitro. Oncol Lett. 2019 Aug;18(2):2102-2108. https://doi.org/10.3892/ol.2019.10518
13. Nasr El-Din WA, Abdel Fattah IO. L-arginine mitigates choroid plexus changes in Alzheimer’s disease rat model via oxidative/inflammatory burden and behavioral modulation. Tissue Cell. 2024 Dec;91:102572. https://doi.org/10.1016/j.tice.2024.102572
14. H W Aledani T, N Al-Hayder M, S Al-Mayyahi R. Severe deterioration in sperm parameters and testes of rats administered naproxen and diclofenac at pre-puberty: An experimental study. Int J Reprod Biomed. 2022 Nov 2;20(10):831-840. https://doi.org/10.18502/ijrm.v20i10.12267
15. Shin JW, Seol IC. Interpretation of animal dose and human equivalent dose for drug development. J Korean Orient Med. 2010;31:1–7.
16. Liu H, Zhu R, Liu C, Ma R, Wang L, Chen B, Li L, Niu J, Zhao D, Mo F, Brömme D, Zhang D, Gao S. Evaluation of Decalcification Techniques for Rat Femurs Using HE and Immunohistochemical Staining. Biomed Res Int. 2017;2017:9050754. https://doi.org/10.1155/2017/9050754
17. Ren S, Jiao G, Zhang L, You Y, Chen Y. Bionic Tiger-Bone Powder Improves Bone Microstructure and Bone Biomechanical Strength of Ovariectomized Rats. Orthop Surg. 2021 May;13(3):1111-1118. https://doi.org/10.1111/os.12954
18. Si J, Wang C, Zhang D, Wang B, Zhou Y. Osteopontin in Bone Metabolism and Bone Diseases. Med Sci Monit. 2020 Jan 30;26:e919159. https://doi.org/10.12659/MSM.919159
19. Hayman AR. Tartrate-resistant acid phosphatase (TRAP) and the osteoclast/immune cell dichotomy. Autoimmunity. 2008 Apr;41(3):218-23. https://doi.org/10.1080/08916930701694667
20. Esteban-Villarrubia J, Soto-Castillo JJ, Pozas J, San Román-Gil M, Orejana-Martín I, Torres-Jiménez J, Carrato A, Alonso-Gordoa T, Molina-Cerrillo J. Tyrosine Kinase Receptors in Oncology. Int J Mol Sci. 2020 Nov 12;21(22):8529. https://doi.org/10.3390/ijms21228529
21. Hochhaus A, Baccarani M, Silver RT, Schiffer C, Apperley JF, Cervantes F, Clark RE, Cortes JE, Deininger MW, Guilhot F, Hjorth-Hansen H, Hughes TP, Janssen JJWM, Kantarjian HM, Kim DW, Larson RA, Lipton JH, Mahon FX, Mayer J, Nicolini F, Niederwieser D, Pane F, Radich JP, Rea D, Richter J, Rosti G, Rousselot P, Saglio G, Saußele S, Soverini S, Steegmann JL, Turkina A, Zaritskey A, Hehlmann R. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia. 2020 Apr;34(4):966-984. https://doi.org/10.1038/s41375-020-0776-2
22. Bhatia R. Novel approaches to therapy in CML. Hematology Am Soc Hematol Educ Program. 2017 Dec 8;2017(1):115-120. https://doi.org/10.1182/asheducation-2017.1.115