Electronic clinical decision support tools in antibiotic prescribing: A systematic review
Main Article Content
Keywords
electronic tools, CDSS, antibiotics
Abstract
The inappropriate use of antibiotics has led to an increase in bacterial resistance and a rise in adverse reactions, putting patients’ lives at risk and generating high costs for the healthcare system. The objective of this systematic review is to evaluate electronic decision support tools in antibiotic management. A search for related articles was conducted in the PubMed, Scopus, and DOAJ databases, following the PRISMA methodology, and studies written in English were selected. Five observational studies and four implementation studies were evaluated using the ROBINS-I tool to determine the risk of bias. Out of a total of 143 identified publications, 15 met the inclusion criteria. The selected studies showed significant improvements in the appropriateness of antibiotic prescriptions after implementing CDSS tools. These 15 tools proved effective in reducing prescription errors, improving adherence to clinical guidelines, and decreasing medication-related adverse events. However, their effectiveness critically depends on proper implementation, ongoing training, and adaptation to specific clinical contexts. Future studies should address current barriers and explore the long-term sustainability of CDSS, in addition to conducting detailed economic analyses to justify investment in these technologies.
References
International Journal of Molecular Sciences. Multidisciplinary Digital Publishing Institute (MDPI); 2023.
2. de la Fuente-Nunez C, Cesaro A, Hancock REW. Antibiotic failure: Beyond antimicrobial resistance. Drug Resistance Updates.
2023 Nov; 71:101012.
3. Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, et al. Antibiotic resistance: a rundown of a global crisis.
Vol. 11, Infection and Drug Resistance. Dove Medical Press Ltd.; 2018. p. 1645–58.
4. Nathan C. Antibiotics at the crossroads. Nature. 2004;431(7011):899–902.
5. Pachay Jorge. Las infecciones bacterianas y su resistencia a los antibióticos. Caso de estudio: Hospital Oncológico “Dr. Julio
Villacreses Colmont Solca.” Revista Científica de la Universidad de Cienfuegos [Internet]. 2018; Available from: http://rus.ucf.
edu.cu/index.php/rus
6. Christaki E, Marcou M, Tofarides A. Antimicrobial Resistance in Bacteria: Mechanisms, Evolution, and Persistence. J Mol Evol.
2020 Jan 28;88(1):26–40.
7. Tarín-Pelló A, Suay-García B, Pérez-Gracia MT. Antibiotic resistant bacteria: current situation and treatment options to
accelerate the development of a new antimicrobial arsenal. Expert Rev Anti Infect Ther. 2022 Aug 3;20(8):1095–108.
8. Hatfull GF, Dedrick RM, Schooley RT. Phage Therapy for Antibiotic-Resistant Bacterial Infections. Annu Rev Med. 2022 Jan
27;73(1):197–211.
9. Santacroce L, Di Domenico M, Montagnani M, Jirillo E. Antibiotic Resistance and Microbiota Response. Curr Pharm Des. 2023
Feb;29(5):356–64.
10. Kim JI, Maguire F, Tsang KK, Gouliouris T, Peacock SJ, McAllister TA, et al. Machine Learning for Antimicrobial Resistance
Prediction: Current Practice, Limitations, and Clinical Perspective. Clin Microbiol Rev. 2022 Sep 21;35(3).
11. Lluka T, Stokes JM. Antibiotic discovery in the artificial intelligence era. Ann N Y Acad Sci. 2023 Jan 29;1519(1):74–93.
12. Rabaan AA, Alhumaid S, Mutair A Al, Garout M, Abulhamayel Y, Halwani MA, et al. Application of Artificial Intelligence in
Combating High Antimicrobial Resistance Rates. Antibiotics. 2022 Jun 8;11(6):784.
13. Dunn Lopez K, Gephart SM, Raszewski R, Sousa V, Shehorn LE, Abraham J. Integrative review of clinical decision support for
registered nurses in acute care settings. Vol. 24, Journal of the American Medical Informatics Association: JAMIA. 2017. p.
441–50.
14. Musen MA, Shahar Y, Shortliffe EH. Clinical decision-support systems. In: Springer, editor. Biomedical informatics: computer
applications in health care and biomedice. 4th ed. 2014.
15. Smith M, Nazario B, Bhargava H, Cassoobhoy A. WebMD LLC. 2018. WebMD.
16. Zeiger RF. McGraw-Hill’s. 2018. Diagnosaurus. 4.0.
17. Isaac T, Zheng J, Jha A. Use of UpToDate and outcomes in US hospitals. J Hosp Med. 2012 Feb 16;7(2):85–90.
18. Kronenfeld MR, Curtis Bay R, Coombs W. Survey of user preferences from a comparative trial of uptodate and clinicalkey.
Journal of the Medical Library Association. 2013;101(2):151–4.
19. Latoszek-Berendsen A, Tange H, Van den Herik HJ, Hasman A. From clinical practice guidelines to computer-interpretable
guidelines. A literature overview. Methods Inf Med. 2010;49(6):550–70.
20. Scheepers-Hoeks AM, Grouls RJ, Neef C, Korsten HH. Strategy for implementation and first results of advanced clinical decision
support in hospital pharmacy practice. Stud Health Technol Inform. 2009; 148:142–8.
21. Wasylewicz ATM, Scheepers-Hoeks AMJW. Clinical Decision Support Systems. In: Fundamentals of Clinical Data Science
[Internet]. Cham: Springer International Publishing; 2019. p. 153–69. Available from: http://link.springer.com/10.1007/978-
3-319-99713-1_11
22. Chrimes D. Using Decision Trees as an Expert System for Clinical Decision Support for COVID-19. Interact J Med Res [Internet].
2023 Jan 30 [cited 2024 Jun 25];12:e42540. Available from: https://pubmed.ncbi.nlm.nih.gov/36645840/
23. Vrel JP, Oulmane S, Boukobza A, Burgun A, Tsopra R. A COVID-19 Decision Support System for Phone Call Triage, Designed by
and for Medical Students. Stud Health Technol Inform [Internet]. 2021 Jul 1 [cited 2024 Jun 25];281:525–9. Available from: https://pubmed.ncbi.nlm.nih.gov/34042631/
24. Neapolitan R, Jiang X, Ladner DP, Kaplan B. A primer on bayesian decision analysis with an application to a kidney transplant
decision. Transplantation. 2016;100(3):489–96.
25. Stojadinovic A, Bilchik A, Smith D, Eberhardt JS, Ward EB, Nissan A. Clinical decision support and individualized prediction of
survival in colon cancer: bayesian belief network model. Ann Surg Oncol. 2013;20(1):161–74.
26. Jalali A, Bender D, Rehman M, Nadkanri V, Nataraj C. Advanced analytics for outcome prediction in intensive care units. Conf
Proc IEEE Eng Med Biol Soc. 2016;2520–4.
27. Shamir RR, Dolber T, Noecker AM, Walter BL, McIntyre CC. Machine learning approach to optimizing combined stimulation and
medication therapies for Parkinson’s disease. Brain Stimul. 2015;8(6):1025–32.
28. Tenorio JM, Hummel AD, Cohrs FM, Sdepanian VL, Pisa IT, de Fatima Marin H. Artificial intelligence techniques applied to the
development of a decision-support system for diagnosing celiac disease. Int J Med Inform. 2011;80(11):793–802.
29. Patel D, Lawson W, Guglielmo BJ. Antimicrobial stewardship programs: interventions and associated outcomes. Expert Rev Anti
Infect Ther. 2008; 6:209–22.
30. Huttner B, Harbarth S, Nathwani D. Success stories of implementation of antimicrobial stewardship: a narrative review. Clin
Microbiol Infect. 2014; 20:954–62.
31. Peiffer-Smadja N, Rawson TM, Ahmad R, Buchard A, Georgiou P, Lescure FX, et al. Machine learning for clinical decision support
in infectious diseases: a narrative review of current applications. Clinical Microbiology and Infection. 2020 May;26(5):584–95.
32. by Jonathan Sterne EA, Higgins JP, Elbers RG, Reeves BC, Jac S. Risk Of Bias In Non-randomized Studies of Interventions
(ROBINS-I): detailed guidance [Internet]. 2016. Available from: http://www.riskofbias.info
33. Nadeau E, Mercier A, Perron J, Gilbert M, Nault V, Beaudoin M, et al. Clinical impact of accepting or rejecting a recommendation
from a clinical decision support system–assisted antibiotic stewardship program. Journal of the Association of Medical
Microbiology and Infectious Disease Canada. 2021 Jun 1;6(2):85–93.
34. Simões AS, Maia MR, Gregório J, Couto I, Asfeldt AM, Simonsen GS, et al. Participatory implementation of an antibiotic
stewardship programme supported by an innovative surveillance and clinical decision-support system. Journal of Hospital
Infection. 2018 Nov 1;100(3):257–64.
35. Calvo-Cidoncha E, Camacho-Hernando C, Feu F, Pastor-Duran X, Codina-Jané C, Lozano-Rubí R. OntoPharma: ontology based
clinical decision support system to reduce medication prescribing errors. BMC Med Inform Decis Mak. 2022 Dec 1;22(1).
36. Akhloufi H, van der Sijs H, Melles DC, van der Hoeven CP, Vogel M, Mouton JW, et al. The development and implementation
of a guideline-based clinical decision support system to improve empirical antibiotic prescribing. BMC Med Inform Decis Mak.
2022 Dec 1;22(1).
37. Marulanda K, Willis Z, Wilson W, Koonce RD, Lamm A, McLean SE, et al. Implementation of Electronic Clinical Decision Support
Tools for Antibiotic Stewardship in Pediatric Appendicitis. American Surgeon. 2022 Jun 1;88(6):1146–52.
38. Wang HY, Treu CN, Cocca M, Felton D, Gatton B. Appropriateness of antibiotic selection for pneumonia in the emergency
department: pre-and post-order set changes. International Journal of Pharmacy Practice. 2021 Oct 1;29(5):493–8.
39. Calloway S, Akilo H, Bierman K. Impact of a clinical decision support system on pharmacy clinical interventions, documentation
efforts, and costs. Hosp Pharm. 2013;48(9):744–52.
40. May A, Hester A, Quairoli K, Wong JR, Kandiah S. Impact of Clinical Decision Support on Azithromycin Prescribing in Primary
Care Clinics. J Gen Intern Med. 2021 Aug 1;36(8):2267–73.
41. Müller L, Srinivasan A, Abeles SR, Rajagopal A, Torriani FJ, Aronoff-Spencer E. A Risk-Based Clinical Decision Support System for
Patient-Specific Antimicrobial Therapy (iBiogram): Design and Retrospective Analysis. J Med Internet Res. 2021;23(12).
42. Manski-Nankervis JA, Biezen R, Thursky K, Boyle D, Clark M, Lo S, et al. Developing a Clinical Decision Support Tool for
Appropriate Antibiotic Prescribing in Australian General Practice: A Simulation Study. Medical Decision Making. 2020 May
1;40(4):428–37.
43. Eudaley ST, Mihm AE, Higdon R, Jeter J, Chamberlin SM. Development and implementation of a clinical decision support
tool for treatment of uncomplicated urinary tract infections in a family medicine resident clinic. Journal of the American
Pharmacists Association. 2019 Jul 1;59(4):579–85.
44. Mann D, Hess R, McGinn T, Richardson S, Jones S, Palmisano J, et al. Impact of Clinical Decision Support on Antibiotic Prescribing
for Acute Respiratory Infections: A Cluster Randomized Implementation Trial. J Gen Intern Med. 2020 Nov 1; 35:788–95.
45. Delory T, Jeanmougin P, Lariven S, Aubert JP, Peiffer-Smadja N, Boëlle PY, et al. A computerized decision support system (CDSS)
for antibiotic prescription in primary care-Antibioclic: implementation, adoption and sustainable use in the era of extended
antimicrobial resistance. J Antimicrob Chemother. 2020 Aug 1;75(8):2353–62.
46. Dutta S, Mcevoy DS, Rubins DM, Dighe AS, Filbin MR, Rhee C. Clinical decision support improves blood culture collection before
intravenous antibiotic administration in the emergency department. Journal of the American Medical Informatics Association.
2022 Oct 1;29(10):1705–14.
47. Hum RS, Cato K, Sheehan B, Patel S, Duchon J, DeLaMora P, et al. Developing clinical decision support within a commercial
electronic health record system to improve antimicrobial prescribing in the neonatal ICU. Appl Clin Inform. 2014;5(2):368–87.
48. Simões AS, Maia MR, Gregório J, Couto I, Asfeldt AM, Simonsen GS, et al. Participatory implementation of an antibiotic
stewardship programme supported by an innovative surveillance and clinical decision-support system. Journal of Hospital Infection. 2018 Nov 1;100(3):257–64.
49. Nadeau E, Mercier A, Perron J, Gilbert M, Nault V, Beaudoin M, et al. Clinical impact of accepting or rejecting a recommendation
from a clinical decision support system–assisted antibiotic stewardship program. Journal of the Association of Medical
Microbiology and Infectious Disease Canada. 2021 Jun 1;6(2):85–93.
50. Calvo-Cidoncha E, Camacho-Hernando C, Feu F, Pastor-Duran X, Codina-Jané C, Lozano-Rubí R. OntoPharma: ontology based
clinical decision support system to reduce medication prescribing errors. BMC Med Inform Decis Mak. 2022 Dec 1;22(1).
51. Akhloufi H, van der Sijs H, Melles DC, van der Hoeven CP, Vogel M, Mouton JW, et al. The development and implementation
of a guideline-based clinical decision support system to improve empirical antibiotic prescribing. BMC Med Inform Decis Mak.
2022 Dec 1;22(1).
52. Marulanda K, Willis Z, Wilson W, Koonce RD, Lamm A, McLean SE, et al. Implementation of Electronic Clinical Decision Support
Tools for Antibiotic Stewardship in Pediatric Appendicitis. American Surgeon. 2022 Jun 1;88(6):1146–52.
53. Dutta S, Mcevoy DS, Rubins DM, Dighe AS, Filbin MR, Rhee C. Clinical decision support improves blood culture collection before
intravenous antibiotic administration in the emergency department. Journal of the American Medical Informatics Association.
2022 Oct 1;29(10):1705–14.
54. Wang HY, Treu CN, Cocca M, Felton D, Gatton B. Appropriateness of antibiotic selection for pneumonia in the emergency
department: pre-and post-order set changes. International Journal of Pharmacy Practice. 2021 Oct 1;29(5):493–8.
55. Calloway S, Akilo H, Bierman K. Impact of a clinical decision support system on pharmacy clinical interventions, documentation
efforts, and costs. Hosp Pharm. 2013;48(9):744–52.
56. May A, Hester A, Quairoli K, Wong JR, Kandiah S. Impact of Clinical Decision Support on Azithromycin Prescribing in Primary
Care Clinics. J Gen Intern Med. 2021 Aug 1;36(8):2267–73.
57. Müller L, Srinivasan A, Abeles SR, Rajagopal A, Torriani FJ, Aronoff-Spencer E. A Risk-Based Clinical Decision Support System for
Patient-Specific Antimicrobial Therapy (iBiogram): Design and Retrospective Analysis. J Med Internet Res. 2021;23(12).
58. Manski-Nankervis JA, Biezen R, Thursky K, Boyle D, Clark M, Lo S, et al. Developing a Clinical Decision Support Tool for
Appropriate Antibiotic Prescribing in Australian General Practice: A Simulation Study. Medical Decision Making. 2020 May
1;40(4):428–37.
59. Hum RS, Cato K, Sheehan B, Patel S, Duchon J, DeLaMora P, et al. Developing clinical decision support within a commercial
electronic health record system to improve antimicrobial prescribing in the neonatal ICU. Appl Clin Inform [Internet]. 2014
[cited 2024 Sep 22];5(2):368–87. Available from: https://pubmed.ncbi.nlm.nih.gov/25024755/
60. Eudaley ST, Mihm AE, Higdon R, Jeter J, Chamberlin SM. Development and implementation of a clinical decision support
tool for treatment of uncomplicated urinary tract infections in a family medicine resident clinic. J Am Pharm Assoc (2003)
[Internet]. 2019 Jul 1 [cited 2024 Sep 22];59(4):579–85. Available from: https://pubmed.ncbi.nlm.nih.gov/31060794/
61. Mann D, Hess R, McGinn T, Richardson S, Jones S, Palmisano J, et al. Impact of Clinical Decision Support on Antibiotic Prescribing
for Acute Respiratory Infections: a Cluster Randomized Implementation Trial. J Gen Intern Med [Internet]. 2020 Nov 1 [cited
2024 Sep 22];35(Suppl 2):788–95. Available from: https://pubmed.ncbi.nlm.nih.gov/32875505/
62. Delory T, Jeanmougin P, Lariven S, Aubert JP, Peiffer-Smadja N, Boëlle PY, et al. A computerized decision support system (CDSS)
for antibiotic prescription in primary care-Antibioclic: implementation, adoption and sustainable use in the era of extended
antimicrobial resistance. J Antimicrob Chemother [Internet]. 2020 Aug 1 [cited 2024 Sep 22];75(8):2353–62. Available from:
https://pubmed.ncbi.nlm.nih.gov/32357226/
63. Laka M, Milazzo A, Merlin T. Can evidence-based decision support tools transform antibiotic management? A systematic
review and meta-analyses. Journal of Antimicrobial Chemotherapy. 2020 May 1;75(5):1099–111.
64. Peiffer-Smadja N, Poda A, Ouedraogo AS, Guiard-Schmid JB, Delory T, Le Bel J, et al. Paving the Way for the Implementation
of a Decision Support System for Antibiotic Prescribing in Primary Care in West Africa: Preimplementation and Co-Design
Workshop with Physicians. J Med Internet Res [Internet]. 2020 Jul 1 [cited 2024 Jun 2];22(7). Available from: https://doi.
org/10.2196/1794
65. Sintchenko V, Coiera E, Gilbert GL. Decision support systems for antibiotic prescribing. Vol. 21, Current Opinion in Infectious
Diseases. 2008. p. 573–9.
66. Bauchner H, Wise PH. Antibiotics without prescription: “bacterial or medical resistance”? The Lancet [Internet]. 2000 Apr 29
[cited 2024 Jun 2];355(9214):1480. Available from: https://doi.org/10.1016/S0140-6736(00)02160-7
67. Livermore DM. Minimising antibiotic resistance. Lancet Infect Dis [Internet]. 2005 [cited 2024 Jun 2];5 7(7):450–9. Available
from: https://doi.org/10.1016/S1473-3099(05)70166-3
68. Llor C, Bjerrum L. Antimicrobial resistance: risk associated with antibiotic overuse and initiatives to reduce the problem. Ther
Adv Drug Saf [Internet]. 2014 [cited 2024 Jun 2];5(6):229–41. Available from: https://doi.org/10.1177/2042098614554919
69. Patini R, Mangino G, Martellacci L, Quaranta G, Masucci L, Gallenzi P. The Effect of Different Antibiotic Regimens on Bacterial
Resistance: A Systematic Review. Antibiotics [Internet]. 2020 Jan 1 [cited 2024 Jun 2];9(1). Available from: https://doi.
org/10.3390/antibiotics9010022
70. Laka M, Milazzo A, Merlin T. Can evidence-based decision support tools transform antibiotic management? A systematic
review and meta-analyses. J Antimicrob Chemother [Internet]. 2020 May 1 [cited 2024 Jun 2];75(5):1099–111. Available from:
https://doi.org/10.1093/jac/dkz543 71. Holstiege J, Mathes T, Pieper D. Effects of computer-aided clinical decision support systems in improving antibiotic prescribing
by primary care providers: a systematic review. J Am Med Inform Assoc [Internet]. 2014 Aug 14 [cited 2024 Jun 2];22 1(1):236–
42. Available from: https://doi.org/10.1136/amiajnl-2014-002886
72. Sintchenko V, Coiera E, Gilbert GL. Decision support systems for antibiotic prescribing. Curr Opin Infect Dis [Internet]. 2008 Dec
[cited 2024 Jun 2];21(6):573–9. Available from: https://doi.org/10.1097/QCO.0b013e3283118932
73. Marulanda K, Willis Z, Wilson W, Koonce RD, Lamm A, McLean SE, et al. Implementation of Electronic Clinical Decision Support
Tools for Antibiotic Stewardship in Pediatric Appendicitis. American Surgeon. 2022 Jun 1;88(6):1146–52.
74. Wang HY, Treu CN, Cocca M, Felton D, Gatton B. Appropriateness of antibiotic selection for pneumonia in the emergency
department: pre-and post-order set changes. International Journal of Pharmacy Practice. 2021 Oct 1;29(5):493–8.
75. Nadeau E, Mercier A, Perron J, Gilbert M, Nault V, Beaudoin M, et al. Clinical impact of accepting or rejecting a recommendation
from a clinical decision support system–assisted antibiotic stewardship program. Journal of the Association of Medical
Microbiology and Infectious Disease Canada. 2021 Jun 1;6(2):85–93.
76. Manski-Nankervis JA, Biezen R, Thursky K, Boyle D, Clark M, Lo S, et al. Developing a Clinical Decision Support Tool for
Appropriate Antibiotic Prescribing in Australian General Practice: A Simulation Study. Med Decis Making [Internet]. 2020 May
1 [cited 2024 Sep 22];40(4):428–37. Available from: https://pubmed.ncbi.nlm.nih.gov/32507028/
77. Akhloufi H, van der Sijs H, Melles DC, van der Hoeven CP, Vogel M, Mouton JW, et al. The development and implementation
of a guideline-based clinical decision support system to improve empirical antibiotic prescribing. BMC Med Inform Decis Mak.
2022 Dec 1;22(1).
78. Manaktala S, Claypool SR. Evaluating the impact of a computerized surveillance algorithm and decision support system on
sepsis mortality. J Am Med Inform Assoc [Internet]. 2017 Jan 1 [cited 2024 Jun 2];24(1):88–95. Available from: https://doi.
org/10.1093/jamia/ocw056
79. Dutta S, Mcevoy DS, Rubins DM, Dighe AS, Filbin MR, Rhee C. Clinical decision support improves blood culture collection before
intravenous antibiotic administration in the emergency department. Journal of the American Medical Informatics Association.
2022 Oct 1;29(10):1705–14.
80. May A, Hester A, Quairoli K, Wong JR, Kandiah S. Impact of Clinical Decision Support on Azithromycin Prescribing in Primary
Care Clinics. J Gen Intern Med. 2021 Aug 1;36(8):2267–73.
81. Calvo-Cidoncha E, Camacho-Hernando C, Feu F, Pastor-Duran X, Codina-Jané C, Lozano-Rubí R. OntoPharma: ontology based
clinical decision support system to reduce medication prescribing errors. BMC Med Inform Decis Mak. 2022 Dec 1;22(1).
82. Rozenblum R, Rodriguez-Monguio R, Volk LA, Forsythe KJ, Myers S, McGurrin M, et al. Using a Machine Learning System
to Identify and Prevent Medication Prescribing Errors: A Clinical and Cost Analysis Evaluation. Jt Comm J Qual Patient Saf
[Internet]. 2020 Jan 1 [cited 2024 Jun 2];46(1):3–10. Available from: https://doi.org/10.1016/j.jcjq.2019.09.008
83. Kuperman GJ, Bobb A, Payne TH, Avery AJ, Gandhi TK, Burns G, et al. Review Paper: Medication-related Clinical Decision
Support in Computerized Provider Order Entry Systems: A Review. J Am Med Inform Assoc [Internet]. 2007 Jan [cited 2024 Jun
2];14 1(1):29–40. Available from: https://doi.org/10.1197/jamia.M2170
84. Tokgöz P, Hafner J, Dockweiler C. Factors influencing the implementation of AI-based decision support systems for antibiotic
prescription in hospitals: A qualitative analysis from the perspective of health professionals. Gesundheitswesen. 2023 Dec
11;85(12):1220–8.
85. Peiffer-Smadja N, Poda A, Ouedraogo AS, Guiard-Schmid JB, Delory T, Le Bel J, et al. Paving the way for the implementation of
a decision support system for antibiotic prescribing in primary care in west Africa: Preimplementation and co-design workshop
with physicians. J Med Internet Res. 2020 Jul 1;22(7).
86. Peiffer-Smadja N, Rawson TM, Ahmad R, Buchard A, Pantelis G, Lescure FX, et al. Machine learning for clinical decision support
in infectious diseases: a narrative review of current applications. Vol. 26, Clinical Microbiology and Infection. Elsevier B.V.;
2020. p. 584–95.
87. Fillmore CL, Bray BE, Kawamoto K. Systematic review of clinical decision support interventions with potential for inpatient cost
reduction. BMC Med Inform Decis Mak [Internet]. 2013 Dec 17 [cited 2024 Jun 2];13(1):135–135. Available from: https://doi.
org/10.1186/1472-6947-13-135
88. Vermeulen KM, van Doormaal JE, Zaal RJ, Mol PGM, Lenderink AW, Haaijer-Ruskamp FM, et al. Cost-effectiveness of an
electronic medication ordering system (CPOE/CDSS) in hospitalized patients. Int J Med Inform [Internet]. 2014 [cited 2024 Jun
2];83 8(8):572–80. Available from: https://doi.org/10.1016/j.ijmedinf.2014.05.003
89. Zheng K, Padman R, Johnson MP, Diamond HS. Understanding technology adoption in clinical care: Clinician adoption behavior
of a point-of-care reminder system. Int J Med Inform [Internet]. 2005 Aug [cited 2024 Jun 2];74 7-8(7–8):535–43. Available
from: https://doi.org/10.1016/j.ijmedinf.2005.03.007
90. Laka M, Milazzo A, Merlin T. Why provision of clinical decision support (CDS) is not enough? Factors influencing the CDS
adoption. Eur J Public Health [Internet]. 2020 Sep 1 [cited 2024 Jun 2];30(Supplement_5). Available from: https://doi.
org/10.1093/eurpub/ckaa165.223
91. Sutton RT, Pincock D, Baumgart DC, Sadowski DC, Fedorak RN, Kroeker KI. An overview of clinical decision support systems:
benefits, risks, and strategies for success. NPJ Digit Med [Internet]. 2020 Dec 1 [cited 2024 Jun 2];3(1). Available from: https://
doi.org/10.1038/s41746-020-0221-y 92. Mahadevaiah G, Prasad R V., Bermejo I, Jaffray D, Dekker A, Wee L. Artificial intelligence-based clinical decision support in
modern medical physics: Selection, acceptance, commissioning, and quality assurance. Med Phys [Internet]. 2020 Jun 1 [cited
2024 Jun 2];47(5):e228–35. Available from: https://pubmed.ncbi.nlm.nih.gov/32418341/
93. Devaraj S, Sharma SK, Fausto DJ, Viernes S, Kharrazi H. Barriers and Facilitators to Clinical Decision Support Systems Adoption:
A Systematic Review. Journal of Business Administration Research. 2014 Jul 24;3(2).
94. Robertson J, Moxey AJ, Newby DA, Gillies MB, Williamson M, Pearson SA. Electronic information and clinical decision support
for prescribing: State of play in Australian general practice. Fam Pract. 2011 Feb 1;28(1):93–101.
95. Trafton J, Martins S, Michel M, Lewis E, Wang D, Combs A, et al. Evaluation of the Acceptability and Usability of a Decision
Support System to Encourage Safe and Effective Use of Opioid Therapy for Chronic, Noncancer Pain by Primary Care Providersp
me_818 575.585 [Internet]. Vol. 11, Original Research Article Pain Medicine. Wiley Periodicals, Inc; 2010. Available from:
https://academic.oup.com/painmedicine/article/11/4/575/1894105
96. Khalifa M, Zabani I. Improving Utilization of Clinical Decision Support Systems by Reducing Alert Fatigue: Strategies and
Recommendations. Stud Health Technol Inform [Internet]. 2016 [cited 2024 Jun 2]; 226:51–4. Available from: https://doi.
org/10.3233/978-1-61499-664-4-51
97. Ancker JS, Edwards A, Nosal S, Hauser D, Mauer E, Kaushal R. Effects of workload, work complexity, and repeated alerts on
alert fatigue in a clinical decision support system. BMC Med Inform Decis Mak [Internet]. 2017 Apr 10 [cited 2024 Jun 2];17(1).
Available from: https://doi.org/10.1186/s12911-017-0430-8
98. Kesselheim AS, Cresswell K, Phansalkar S, Bates DW, Sheikh A. Clinical decision support systems could be modified to reduce
“alert fatigue” while still minimizing the risk of litigation. Health Aff [Internet]. 2011 Dec [cited 2024 Jun 2];30 12(12):2310–7.
Available from: https://doi.org/10.1377/hlthaff.2010.1111
99. Yan H, Jiang Y, Zheng J, Peng C, Li Q. A multilayer perceptron-based medical decision support system for heart disease diagnosis.
Expert Syst Appl. 2006 Feb;30(2):272–81.
100. Roberts JA, Abdul-Aziz MH, Lipman J, Mouton JW, Vinks AA, Felton TW, et al. Individualised antibiotic dosing for patients
who are critically ill: challenges and potential solutions. Lancet Infect Dis [Internet]. 2014 [cited 2024 Jun 2];14 6(6):498–509.
Available from: https://doi.org/10.1016/S1473-3099(14)70036-2
101. Cotta MO, Roberts JA, Lipman J. Antibiotic dose optimization in critically ill patients. Med Intensiva [Internet]. 2015 Dec 1
[cited 2024 Jun 2];39 9(9):563–72. Available from: https://doi.org/10.1016/j.medin.2015.07.009
102. Nikolas S, Thorsten R, Max K, Patrick M, Markus K, Güzin S, et al. Personalized Antibiotic Therapy for the Critically Ill:
Implementation Strategies and Effects on Clinical Outcome of Piperacillin Therapeutic Drug Monitoring—A Descriptive
Retrospective Analysis. Antibiotics [Internet]. 2021 Dec 1 [cited 2024 Jun 2];10(12). Available from: https://doi.org/10.3390/
antibiotics10121452
103. Galopin A, Bouaud J, Pereira S, Seroussi B. An Ontology-Based Clinical Decision Support System for the Management of Patients
with Multiple Chronic Disorders. Stud Health Technol Inform [Internet]. 2015 [cited 2024 Jun 2]; 216:275–9. Available from:
https://doi.org/10.3233/978-1-61499-564-7-275
104. Calloway S, Akilo H, Bierman K. Impact of a clinical decision support system on pharmacy clinical interventions, documentation
efforts, and costs. Hosp Pharm. 2013;48(9):744–52.
105. Beierle C, Sader B, Eichhorn C, Kern-Isberner G, Meyer RG, Nietzke M. On the Ontological Modelling of Co-medication and
Drug Interactions in Medical Cancer Therapy Regimens for a Clinical Decision Support System. 2017 IEEE 30th International
Symposium on Computer-Based Medical Systems (CBMS) [Internet]. 2017 Nov 10 [cited 2024 Jun 2];2017-June:105–10.
Available from: https://doi.org/10.1109/CBMS.2017.102
106. Laka M, Milazzo A, Merlin T. Why provision of clinical decision support (CDS) is not enough? Factors influencing the CDS
adoption. Eur J Public Health [Internet]. 2020 Sep 1 [cited 2024 Jun 2];30(Supplement_5). Available from: https://doi.
org/10.1093/eurpub/ckaa165.223
107. Kux BR, Majeed RW, Ahlbrandt J, Röhrig R. Factors Influencing the Implementation and Distribution of Clinical Decision Support
Systems (CDSS). Stud Health Technol Inform [Internet]. 2017 [cited 2024 Jun 2]; 243:127–31. Available from: https://doi.
org/10.3233/978-1-61499-808-2-127
108. Esmaeilzadeh P, Sambasivan M, Kumar N, Nezakati H. Adoption of clinical decision support systems in a developing country:
Antecedents and outcomes of physician’s threat to perceived professional autonomy. Int J Med Inform [Internet]. 2015 Aug 1
[cited 2024 Jun 2];84 8(8):548–60. Available from: https://doi.org/10.1016/j.ijmedinf.2015.03.007
109. Simões AS, Maia MR, Gregório J, Couto I, Asfeldt AM, Simonsen GS, et al. Participatory implementation of an antibiotic
stewardship programme supported by an innovative surveillance and clinical decision-support system. Journal of Hospital
Infection. 2018 Nov 1;100(3):257–64.
110. Müller L, Srinivasan A, Abeles SR, Rajagopal A, Torriani FJ, Aronoff-Spencer E. A Risk-Based Clinical Decision Support System
for Patient-Specific Antimicrobial Therapy (iBiogram): Design and Retrospective Analysis. J Med Internet Res [Internet]. 2021
[cited 2024 Sep 22];23(12). Available from: https://pubmed.ncbi.nlm.nih.gov/34870601/