The first study of 3-M Syndrome in Jordan and Literature Review

Main Article Content

Aseel Alkhawaldeh
Ahmad R. Alsayed
Rajaa Daghash
Jumana Albaramiki
Dana Shibli
Sara Abudahab
Nancy Hakooz https://orcid.org/0000-0002-7973-0473

Keywords

3-m syndrome, rare genetic diseases, autosomal recessive disease, genetics, Jordan

Abstract

The prevalence of 3-M syndrome remains unclear owing to its rarity and the limited number of reported cases in the medical literature. To date, approximately 100 cases of the disorder have been documented in MedlinePlus Genetics. Here, we present the first case study report from Jordan of a boy diagnosed with 3-M syndrome at 9 months of age via karyotyping. The patient exhibited distinct facial features, severe prenatal and postnatal growth retardation, and normal mental development. As rare genetic autosomal recessive mutations are common where consanguineous marriages are prevalent, raising awareness of such rare genetic diseases is critical. This paper aims to provide a case report on 3-M syndrome and a literature review.

Abstract 281 | PDF Downloads 336

References

1. 3-M syndrome. Accessed 16 April 2023, 2023. https://medlineplus.gov/genetics/condition/3-m-syndrome/#frequency
2. Mortier GR, Cohn DH, Cormier‐Daire V, et al. Nosology and classification of genetic skeletal disorders: 2019 revision. American journal of medical genetics Part A. 2019;179(12):2393-2419. https://doi.org/10.1002/ajmg.a.61366
3. Spranger JW, Superti-Furga A, Unger S. Bone dysplasias: an atlas of genetic disorders of skeletal development. Oxford University Press, USA; 2018.
4. Akalın A, Şimşek-Kiper PÖ, Taşkıran E, et al. Typical Face, Developmental Delay, and Hearing Loss in a Patient with 3M Syndrome: The Co-Occurrence of Two Rare Conditions. Molecular Syndromology. 2022;13(6):537-542.https://doi.org/10.1159/000524703
5. Clayton PE, Hanson D, Magee L, et al. Exploring the spectrum of 3‐M syndrome, a primordial short stature disorder of disrupted ubiquitination. Clinical endocrinology. 2012;77(3):335-342. https://doi.org/10.1111/j.1365-2265.2012.04428.x
6. Miller JD, McKusick VA, Malvaux P, et al. The 3-M syndrome: a heritable low birthweight dwarfism. Birth defects original article series. 1975;11(5):39-47.
7. Hanson D, Murray PG, Sud A, et al. The primordial growth disorder 3-M syndrome connects ubiquitination to the cytoskeletal adaptor OBSL1. The American Journal of Human Genetics. 2009;84(6):801-806.https://doi.org/10.1016/j.ajhg.2009.04.021
8. Huber C, Dias-Santagata D, Glaser A, et al. Identification of mutations in CUL7 in 3-M syndrome. Nature genetics. 2005;37(10):1119-1124.https://doi.org/10.1038/ng1628
9. Temtamy SA, Aglan MS, Ashour AM, et al. 3-M syndrome: a report of three Egyptian cases with review of the literature. Clinical dysmorphology. 2006;15(2):55-64. https://doi.org/10.1097/01.mcd.0000198926.01706.33
10. Hanson D, Murray P, Coulson T, et al. Mutations in CUL7, OBSL1 and CCDC8 in 3-M syndrome lead to disordered growth factor signalling. Journal of molecular endocrinology. 2012;49(3):267. https://doi.org/10.1530/jme-12-0034
11. Khachnaoui-Zaafrane K, Ouertani I, Zanati A, et al. 3M syndrome: A Tunisian seven-cases series. European Journal of Medical Genetics. 2022;65(3):104448. https://doi.org/10.1016/j.ejmg.2022.104448
12. Hanson D, Murray PG, Black GC, et al. The genetics of 3-M syndrome: unravelling a potential new regulatory growth pathway. Hormone research in paediatrics. 2011;76(6):369-378. https://doi.org/10.1159/000334392
13. Hanson D, Murray PG, O’Sullivan J, et al. Exome sequencing identifies CCDC8 mutations in 3-M syndrome, suggesting that CCDC8 contributes in a pathway with CUL7 and OBSL1 to control human growth. The American Journal of Human Genetics. 2011;89(1):148-153. https://doi.org/10.1016/j.ajhg.2011.05.028
14. Huber C, Delezoide A-L, Guimiot F, et al. A large-scale mutation search reveals genetic heterogeneity in 3M syndrome. European journal of human genetics. 2009;17(3):395-400. https://doi.org/10.1038/ejhg.2008.200
15. Vishwakarma P, Dubey A, Kalo D, et al. Identification of a novel mutation (c. 1172_1181 del TGGTGCAAGC (p. Leu391fs) in the CUL7 gene in a patient of 3M Syndrome. Polymorphism. 2022;9:17-22.
16. Huber RS, Houlihan D, Filter KJ. Dubowitz syndrome: a review and implications for cognitive, behavioral, and psychological features. Journal of clinical medicine research. 2011;3(4):147. https://doi.org/10.4021/jocmr581w
17. Hu X, Li H, Gui B, et al. Prenatal and early diagnosis of Chinese 3-M syndrome patients with novel pathogenic variants. Clinica Chimica Acta. 2017;474:159-164. https://doi.org/10.1016/j.cca.2017.09.022
18. Jacob P, Girisha KM. Three M syndrome 2 in two Indian patients. American Journal of Medical Genetics Part A. 2021;185(2):614- 616.https://doi.org/10.1002/ajmg.a.61949
19. HabibUllah H, Albaradie R, Bashir S. 3-M syndrome: a local case report. The American Journal of Case Reports. 2019;20:36. https://doi.org/10.12659/ajcr.912736
20. Hennekam RC, Bijlsma JB, Spranger J, et al. Further delineation of the 3‐M syndrome with review of the literature. American journal of medical genetics. 1987;28(1):195-209. https://doi.org/10.1002/ajmg.1320280127
21. Maksimova N, Hara K, Miyashia A, et al. Clinical, molecular and histopathological features of short stature syndrome with novel CUL7 mutation in Yakuts: new population isolate in Asia. Journal of Medical Genetics. 2007;44(12):772-778.https://doi. org/10.1136/jmg.2007.051979
22. Dias DC, Dolios G, Wang R, et al. CUL7: a DOC domain-containing cullin selectively binds Skp1 Fbx29 to form an SCF-like complex. Proceedings of the National Academy of Sciences. 2002;99(26):16601-16606. https://doi.org/10.1073/pnas.252646399
23. Simsek‐Kiper PO, Taskiran E, Kosukcu C, et al. Further expanding the mutational spectrum and investigation of genotype– phenotype correlation in 3M syndrome. American Journal of Medical Genetics Part A. 2019;179(7):1157-1172. https://doi. org/10.1002/ajmg.a.61154
24. Isik E, Arican D, Atik T, et al. A rare cause of syndromic short stature: 3M syndrome in three families. American Journal of Medical Genetics Part A. 2021;185(2):461-468. https://doi.org/10.1002/ajmg.a.61989
25. Xu X, Sarikas A, Dias-Santagata DC, et al. The CUL7 E3 ubiquitin ligase targets insulin receptor substrate 1 for ubiquitindependent degradation. Molecular cell. 2008;30(4):403-414. https://doi.org/10.1016/j.molcel.2008.03.009

Most read articles by the same author(s)