Editorial

How many manuscripts should I peer review per year?

Fernando FERNANDEZ-LLIMOS, PhD, MPharm, MBA. Editor-in-chief, Pharmacy Practice. Institute for Medicines Research (iMed.ULisboa), Universidade de Lisboa. Lisbon (Portugal). fer_stumpf_tonin@hotmail.com

Teresa M. SALGADO, PhD, MPharm. Associate Editor, Pharmacy Practice. Center for Pharmacy Practice Innovation, School of Pharmacy, Virginia Commonwealth University. Richmond, VA (United States). tmsalgado@vcu.edu

Fernanda S. TONIN, PhD, MPharm. Editorial Board member, Pharmacy Practice. Department of Pharmacy, Federal University of Parana. Curitiba (Brazil). fer_stumpf_tonin@hotmail.com

Pharmacy Practice 2018 peer reviewers.

Published online: 14-Jan-2020

Abstract:
Peer review provides the foundation for the scholarly publishing system. The conventional peer review system consists of using authors of articles as reviewers for other colleagues’ manuscripts in a collaborative-basis system. However, authors complain about a theoretical overwhelming number of invitations to peer review. It seems that authors feel that they are invited to review many more manuscripts than they should when taking into account their participation in the scholarly publishing system. The high number of scientific journals and the existence of predatory journals were reported as potential causes of this excessive number of reviews required. In this editorial, we demonstrate that the number of reviewers required to publish a given number of articles depends exclusively on the journals’ rejection rate and the number of reviewers intended per manuscript. Several initiatives to overcome the peer review crises are suggested.

Keywords:
Peer Review, Research; Open Access Publishing; Periodicals as Topic

Peer review provides the foundation for the scholarly publishing system. Despite the pessimistic conclusion in Jefferson et al.’s abstract — “At present, little empirical evidence is available to support the use of editorial peer review as a mechanism to ensure quality of biomedical research” —, the two studies included in their systematic review, which aimed to assess “the effects of peer review on study report quality,” clearly demonstrate the positive effects of peer review on the methodological quality and the value of the articles reviewed.1,3

Alternative methods for peer review have been studied, even utilizing randomized controlled trial designs, but testing their impact on the quality of the articles in a real-life environment “would be costly, time-consuming and sometimes not feasible”. At the end of the day, the conventional peer review system was reported to be one of the most efficient systems in Kovanis et al.’s analysis.4 In fact, an experience of post-publication review already exists and has exposed the risks associated with the system: Social media is a perfect example of a non-reviewed publishing system, which incontrovertibly has led to a high prevalence of fake news. Facebook’s adoption of fact-checking programs – nothing more than a post-publication review system – demonstrated the limitations of any post-publication peer review.5 This is a lesson we should learn before introducing post-publication review as a common practice in scientific publishing in substitution of traditional pre-publication peer review.6,7

So, if peer review seems to be a good system to improve article quality, why is the system permanently under criticism? Let’s be honest: We are in a rush to publish our papers. Sometimes because they are part of a master’s or doctoral dissertation, other times because we need to add a line to our CVs. Scientific articles live forever and should not follow the popular saying concerning newspapers: “Today’s News, Tomorrow’s Fish Wrap”.8

When authors complain about publication delay and the tardiness of the peer review process, we would rather provide figures, as we usually do in science. Many studies evaluated the publication process times in different biomedical areas and geographic regions, reporting acceptance lag (i.e., time from submission date to acceptance date) of usually over 100 days.5,8,9,10,11 Pharmacy Practice reported a first response time after peer review comments of 92 days (SE=5.7) in 2018.12 We are happy to announce that Pharmacy Practice first response time for original research articles accepted decreased to 80 days (SE=3.8) in 2019, with an acceptance lag of 124 days (SE=5.0).13

As editors of a scientific journal, we have to ask authors who complain about the long publication process times: Do you think we intentionally extend the article’s processing time? Don’t you think that we would prefer to quickly make a decision as to whether to accept or reject the hundreds/thousands of articles we receive? To accept an article, the editor of a peer reviewed journal needs a number of peer reviewer comments supporting the quality of the manuscript. However, to reject a paper, two options exist: ‘desk rejection’ or rejection supported by peer reviewers’ comments. A desk rejection is the negative decision made exclusively by the editor or the editorial board prior to any external peer review process. Considering the principles of a peer reviewed journal, desk rejection should only apply when the manuscript received is outside of the scope of the journal or the study suffers from methodological flaws beyond any possible repair. Although commonly used, desk rejection subverts the concept of a peer review system.13,14

Interestingly, authors also complain about the excessive number of manuscripts they are invited to review. Some of
them write ironic commentaries about why they decline invitations to review based on personal events. Pharmacy Practice has started an in-depth analysis of its peer review selection process, with the aim of identifying differential characteristics of the accepters and decliners. Apart from the “I’m buried in reviews” argument and individuals who simply do not respond to the invitation email, other explanations for declining to serve as peer reviewers were as follows:

- I’m at the end of the semester
- I’m about to go on vacation
- I’m on vacation
- I’ve just returned from vacation
- I’m at the beginning of the semester

So, if in the six-month period of a semester we exclude these four or five month vacation-related periods, not a lot of availability to review remains, especially if we add leaves of absence, sabbaticals, and conference abroad attendance justifications.

As scientists, and before killing the traditional (a.k.a. conventional) peer review system, let us make some calculations to explore what should be the real burden of the system for authors invited to review other’s manuscripts. This is to say, let us calculate the number of reviewers required per article published, using the conventional peer review system (following Kovanis et al.’s terminology), and considering that a manuscript, if rejected, is submitted to a different journal with the same rejection rate. The first journal received A articles and assigned R reviewers to each article, resulting in A*R total reviewers assigned. With a T rejection rate, that first journal will publish A*(1-T) articles. The remaining A*T articles will be submitted to a second journal that will assign the R reviewers to each article, resulting in a total of R*A*T reviewers, publishing (A*T)*(1-T) articles and rejecting A*T*T articles that will be submitted to a third journal. So, the total number of reviewers assigned to the initial A articles after a series of N journals will be:

\[ total\_reviewers = (R * A) + (R * A * T) + (R * A * T * T) + \cdots + (R * A * T^N) \]

And the number of articles published will be:

\[ published = A * (1 - T) + A * T * (1 - T) + A * T^2 * (1 - T) + \cdots + A * T^{N-1} * (1 - T) \]

So, the total number of required peer reviewers per published article will be:

\[ reviewers\_per\_article\_published = \frac{R * A * \sum_{1}^{N} T^{N-1}}{A * (1 - T) * \sum_{1}^{N} T^{N-1}} \]

In fact, the number of reviewers per article published depends only on two variables: the number of peer reviewers assigned per manuscript and the journal’s rejection rate. The latter is expected to have an inverse (negative) correlation with the “climbing upwards” number of existing journals alleged by Rohn. Thus, with a commonly used number of three reviewers assigned to each manuscript received, a journal with an 80% rejection rate will need 15 reviewers to complete the task in order to publish one article. Figure 1 provides the shape of the series with two to five reviewers assigned per manuscript received.

In plain language, to keep the scholarly peer reviewing publishing wheel spinning, the authors of each article published in a journal with an 80% rejection rate should review 15 manuscripts; and if the same research team published five articles in a given year, they should have reviewed 75 manuscripts. Considering an average of five authors per article, each author, in theory, should have to review three manuscripts per every article that they publish. This does not seem to be an unreasonable number of manuscripts to review.

So, what makes authors perceive that they are overwhelmed with the number of invitations they receive to act as peer reviewers? The answer is quite obvious: to maintain the quality of the peer review system and avoid the overwhelming
feeling, every author has to serve as a peer reviewer. When one author declines an invitation to review, another author will be invited, and so on. Reviewing three manuscripts per article published is not a hard job, but reviewing 15 manuscripts per article published, which could result in 75 reviews a year if you publish five articles, may be overwhelming. However, this is not a system problem, but a neglect of duty from the other four co-authors who should be sharing the task.

In 2019, Pharmacy Practice sent out 891 invitations to act as a peer reviewer, with 36 returned as undeliverable emails. From the remaining 855 invitations, 13 (1.5%) colleagues declared that the topic of the manuscript was outside of their expertise, 4 (0.5%) declared that they had a conflict of interest, 209 (24.4%) declined because they were busy, and 411 (48.1%) ignored the invitation altogether and did not reply to the email. Additionally, 7 individuals who had accepted the review never completed the task (12 reviews were ‘in progress’ at the time this editorial was written).

Can we solve this peer review crisis? Yes, we can. Before killing the system, we can try some of the many possible solutions. First and foremost, conducting an educational effort to raise awareness among authors of scientific articles that all should act as peer reviewers, not only the lead or the corresponding authors. Then, a practicality that some journals are implementing, email addresses of all the authors should be available. At the end of the day, per authorship requirements, all authors are responsible for the entire content of the article published. A second potential solution is to compensate reviewers for their time. The job of peer reviewers was traditionally associated with generosity and collegiality, or even just as a moral obligation. Compensating the review effort is still an unsolved issue. Third, we should accept that peer reviewers, when they perform a good review, contributed to the final version of the article more so than many of the individuals listed in the ‘acknowledgements’ section. Unfortunately, journals, indexers, academic institutions and funding bodies are not considering these contributions as curricular merits. Three years ago, Pharmacy Practice started a new practice of including all peer reviewers of the past year as part of collective author in the first editorial of the new year. Thus, their names are searchable in PubMed using the [IR] field descriptor.

Finally, a more complete and fair method of recognizing the contribution of a reviewer to the final version of the article, would be to list them in the article, which would require open peer reviews. Journals and indexers can organize systems to provide public recognition to open reviewers, but more educational efforts are required to change the mind of those defending the old-fashioned blind and double blind peer review processes. More drastic solutions may exist, but hopefully they will not be necessary.

Figure 1. Total number of reviewers required per article published as a function of a journal’s rejection rate. Colored lines represent the number of reviewers assigned per manuscript received.
Peer reviewed journals need peer reviewers, but authors also need peer reviewers to publish their articles. At the end of the day, authors and peer reviewers are the same people.

ACKNOWLEDGEMENTS

We would like to acknowledge Elisa A. Fernandez-Llimos, University of Granada, for her contribution to reviewing the algebra.

Pharmacy Practice 2018 peer reviewers

Three reviews:
Margarida Castel-Branco, University of Coimbra, Portugal
Filipa A. Costa, ISCSEM, Portugal
Derek Stewart, Qatar University, Qatar

Two reviews:
Maria Cordina, University of Malta, Malta
Jack Collins, University of Sydney, Australia
Paul Dillon, Royal College of Surgeons, Ireland
Sofia Kälviemark Sporrong, University of Copenhagen, Denmark

Damian Świeczkowski, Medical University of Gdansk, Poland
Van D. Tran, RUDN University, Russia

One review:
Qalab Abbas, Aga Khan University Hospital, Pakistan
Ali A. Al-Jumaill, University of Iowa, United States
Abdelmajid H. Alnathe, Parkview Regional Medical Center, United States
Moawia Alibakha, Ajman University, United Arab Emirates
Wasem Alssabagh, University of Waterloo, Canada
Chioma Amadi, City University of New York, United States
Johanna Aponte-González, Colombia National University, Colombia
Alessandro Arana, RTI Health Solutions, Spain
Ronen Arbel, Sapir College, Israel
Zubin Austin, University of Toronto, Canada
Miyon Avent, University of Queensland, Australia
Asnake W. Ayale, University of Gondar, Ethiopia
David Balayssac, CHU Clermont-Ferrand, France
Claudio Barbaranelli, Sapienza University of Rome, Italy
Johanna Aponte-González, Colombia National University, Colombia
Charlotte Bekker, Radboud University Medical Center, Netherlands
Durga Bista, Kathmandu University, Nepal
Aline F. Bonetti, Federal University of Parana, Brazil
Helena H. Borba, Federal University of Parana, Brazil
Marcel L. Bouvy, Utrecht University, Netherlands
Cecilia Brata, Universitas of Surabaya, Indonesia
Rachele S. Britt, Beth Israel Deaconess Medical Center, United States
Lea Brühwiler, Patientensicherheit Schweiz, Switzerland
Sarah Brown, Cardiff Metropolitan University, United Kingdom
Josipa Bukic, University of Split, Croatia
Paul W. Bush, Duke University Hospital, United States
Ana C. Cabral, University of Coimbra, Portugal
Barry L. Carter, University of Iowa, United States
Kimberly L. Carter, University of Pennsylvania Health System, United States
Manuel J. Carvajal, Nova Southeastern University, United States
Afonso M. Cavaco, University of Lisbon, Portugal
Huan Keat Chan, Hospital Sultanah Bahiyah, Malaysia
Tyler Chanas, Vidant Medical Center, United States
Timothy F. Chen, University of Sydney, Australia
Bernadette Chevalier, University of Alberta, Canada
Allison M. Chung, Auburn University, United States
Mariani D. Churchwell, University of Toledo, United States
Richard Cooper, University of Sheffield, United Kingdom
Erika Cretton-Scott, Samford University, United States
Petra Czarniak, Curtin University, Australia
Ryan G. D’Angelo, University of the Sciences, United States
Rhian Deslandes, Cardiff University, United Kingdom
Shane P. Desselle, Touro University, United States
Parastou Donyai, University of Reading, United Kingdom
Aaron Drovandi, James Cook University, Australia
Julie Dunne, Dublin Institute of Technology, Ireland
Abubaker Elbur, Imam Abdulrahman Bin Faisal University, Saudi Arabia
Paul Forsyth, NHS Greater Glasgow & Clyde, United Kingdom
Victoria Garcia Cardenas, University of Technology Sydney, Australia
Miguel A. Gastelurrutia, University of Granada, Spain
Maria C. Gaudiano, Italian National Institute of Health, Italy
Natalie Gauld, University of Auckland, New Zealand
Chris M. Gildes, Saint Joseph Health System, United States
Ainhoa Gomez-Lumbreras, University Hospital Vall d’Hebron, Spain
Brian Godman, Karolinska Institute, Sweden
Jason R. Goldsmith, University of Pennsylvania, United States
Diego Gómez-Ceballos, Funiber, Colombia
Jean-Venable R. Goode, Virginia Commonwealth University, United States
Elisabeth Grey, University of Bath, United Kingdom
Olga Grintsova, Pharmacy of Detmold Post, Germany
Gerusa C. Hailla, Federal University of Parana, Brazil
Nicola J. Hall, University of Sunderland, United Kingdom
Tora Hammar, Linnaeus University, Sweden
Drayton A. Hammond, Rush University, United States
Furqan K. Hashmi, University of Punjab, Pakistan
Mohamed A. Hassali, University of Science Malaysia, Malaysia
Andi Hermansyah, Airlangga University, Indonesia
Ludwig Höllein, University of Wuerzburg, Germany
Nejic Horvat, University of Ljubljana, Slovenia
Yen-Ming Huang, University of Wisconsin-Madison, United States
Klejda Hudhra, University of Medicine Tirana, Albania
Inas R. Ibrahim, Uruk University, Iraq
Katia Iskandar, Lebanese International University, Lebanon
Sherine Ismail, King Saud Bin Abdulaziz University, Saudi Arabia
Kristin K. Janke, University of Minnesota, United States
Kelsey L. Japs, VA Palo Alto, United States
Jennie B. Jarrett, University of Illinois at Chicago, United States
Jean-Pierre Jourdan, CHU de Caen Normandie, France
Maram G. Katoue, Kuwait University, Kuwait
Margaret Kay, University of Queensland, Australia
Clark D. Kebodeaux, University of Kentucky, United States
Thomas G. Kempen, Uppsala University, Sweden
Jennifer Kirwin, Northeastern University, United States
Nathalie Lahoud, Lebanese University, Lebanon
Anna Laven, Heinrich-Heine-University, Germany
Anandi V. Law, Western University of Health Sciences, United States
Miranda G. Law, Howard University, United States
Sukhyang Lee, Ajou University, South Korea
Leticia Leonart, Federal University of Paraíba, Brazil
Michelle D. Liedtke, University of Oklahoma, United States
Phei Ching Lim, Hospital Pulai Pinang, Malaysia
Amanda Wei Yin Lim, National Institutes of Health, Malaysia
Chung-Ying Lin, Hong Kong Polytechnic University, China
José Julián López, Universidad Nacional de Colombia, Colombia
Rosa C. Lucchetta, Federal University of Paraíba, Brazil
Karen Luetsch, University of Queensland, Australia
Elyse A. MacDonald, University of Utah Health Care, United States
Katie Maclure, Robert Gordon University, United Kingdom
Kurt Mahan, Presbyterian Healthcare Services, United States
Mark J. Makowsky, University of Alberta, Canada
Márcia Malfára, University of São Paulo, Brazil
Bejoy P. Maniara, James J. Peters VA Medical Center, United States
Brahm Marjadi, Western Sydney University, Australia
Gary R. Matzke, Virginia Commonwealth University, United States
Christopher McCoy, Beth Israel Deaconess Medical Center, United States
Tressa McNorris, Roseman University of Health Sciences, United States
Angelita C. Melo, Federal University of São João Del-Rei, Brazil
Zahra Mirshafiei Langaria, Shahid Beheshti University of Medical Sciences, Iran
Norazlina Mohamed, University Kebangsaan Malaysia, Malaysia
Jean Moon, University of Minnesota, United States
Michelle Murphy, Cooper University Hospital, United States
Sagir Mustapha, Ahmadu Bello University, Nigeria
Joseph Nathan, CVS Health, United States
Sujin Nitzadpakorn, Chulalongkorn University, Thailand
Lucas M. Okumura, Clinical Hospital of Porto Alegre, Brazil
Edmund N. Ossai, Ebonyi State University, Nigeria
Courtney Pagels, Sanford Medical Center Fargo, United States
Subish Palaian, Ajman University, United Arab Emirates
Bridget Paravattil, Qatar University, Qatar
Nilesh Patel, University of Reading, United Kingdom
Guenka Petrova, Medical University Sofia, Bulgaria
Daphne Philbert, University Utrecht, Netherlands
Ann M. Philbrick, University of Minnesota, United States
Jill M. Plevisnky, Rosalind Franklin University, United States
Eng Whui Poh, Southern Australia Health, Australia
Bobby Presley, University of Surabaya, Indonesia
Urszula Religioni, Medical University of Warsaw, Poland
Oleksa G. Rewa, University of Alberta, Canada
Jadranka V. Rodriguez, University of Zagreb, Croatia
Sónia Romano, Centre for Health Evaluation & Research, Portugal
Olfar Rose, impac2t, Germany
Paula Rossignoli, Parana Health Secretariat, Brazil
Janelle F. Rusinger, University of Kansas, United States
Hala Sacre, Lebanese Pharmacists Association, Lebanon
Wada A. Sadig, Bayero University, Nigeria
Teresa M. Salgado, Virginia Commonwealth University, United States
Martina Salib, Royal Prince Alfred Hospital, Australia
Shane Scabill, University of Auckland, New Zealand
Terri Schindel, Edmonton Clinic Health Academy, Canada
Hanna Seidling, University of Heidelberg, Germany
Marguerite Sendall, Queensland University of Technology, Australia
Benjamin Seng, Duke-NUS Medical School, Singapore
Ana Seselja Perisin, University of Split, Croatia
Adji P. Setiai, University of Surabaya, Indonesia
Amy Shaver, University at Buffalo, United States
Olayinka O. Shiyanbola, University of Wisconsin-Madison, United States
Tin Fei Sim, Curtin University, Australia
Bilge Sozen-Sahne, Hacettepe University, Turkey
Sidney Sthos, Creighton University, United States
Ieva Stupans, University of New England, Australia
André-Marie Thouatiou, Medicines for Malaria Venture, Switzerland
Roberta Teixeira, National Institute of Cardiology, Brazil
Fitsum S. Teni, Addis Ababa University, Ethiopia
Fernanda S. Tonin, Federal University of Paraíba, Brazil
Jessica S. Triboletti, Butler University, United States
J. W. Foppe van Mil, Van Mil Consultancy, Netherlands
Tineshwaran Velvanathan, National University of Malaysia, Malaysia
Tara B. Vlasimka, Denver Health Medical Center, United States
Helen Vosper, Robert Gordon University, United Kingdom
Sandy Vrignaud, University Hospital Center of Angers, France
Jennifer Walters, VCU Health, United States
Cheri K. Walker, Southwestern Oklahoma State University, United States
Geoffrey C. Wail, Drake University, United States
Jocelyn A. Watkins, University of Warwick, United Kingdom
Mayyada Wazaify, University of Jordan, Jordan
Tommy Westerlund, Malmö University, Sweden
Sara A. Wettergreen, University of North Texas, United States
James S. Wheeler, University of Tennessee, United States
Kyle J. Wilby, University of Otago, New Zealand
Charlene Williams, University of North Carolina, United States
Arish Widyatny, University Sanata Dharma, Indonesia
Matthew J. Witry, University of Iowa, United States
Seth E. Wolpin, University of Washington, United States
David Wright, University of East Anglia, United Kingdom
Nancy Yunker, Virginia Commonwealth University, United States
Ismael Yunusa, Massachusetts College of Pharmacy and Health Sciences, United States
References


www.pharmacypractice.org (ISSN: 1886-3655)