Original Research

Assessment of the efficacy and safety of favipiravir in patients with SARS-CoV-2 infection in United Arab Emirates: A single-center study

Bayan Ayash (D), Sahab Alkhoujah (D), Neena Abraham (D), Ahmad El Ouweini (D), Sara Mansour (D), Syed Wassif Gillani (D), Rabih Hallit (D), Souheil Hallit (D), Diana Malaeb (D)

Abstract

Background: Anti-viral medications are among the treatment options for coronavirus infectious disease 2019 (COVID-19) management although they are still not FDA approved for coronavirus treatment. We conducted the study to assess the efficacy, and safety of favipiravir versus symptomatic management in patients with COVID-19. Methods: A cross-sectional study included 476 participants, divided into two groups. All patients received symptomatic management, and 300 received favipiravir 1,600 mg/day on day 1 and 600 mg/day on days 2 to 5. Results: The mean age of the patients was 44.18 ± 12.24 years (49.2% females). The most described COVID-19 symptoms was cough, followed by sore throat, headache, and fever. Each side effect of favipiravir was experienced by almost 38% of the patients. The average days for symptoms relief was 4.73 ± 2.25 days. The results of the linear regression showed that the intake of favipiravir vs symptomatic management only was significantly associated with a higher mean number of days until symptoms relief. Conclusion: The results highlight that efficacy of favipiravir is not supported yet for the treatment of COVID-19 as it was associated with higher mean number of days until symptoms relief. However, no remarkable issues with safety associated with Favipiravir were observed.

Keywords: COVID-19; favipiravir; symptomatic management; safety; efficacy

Bayan AYASH. College of Pharmacy, Gulf Medical University, Ajman, United Arab Emirates. 2021mcph18@mygmu.ac.ae Sahab ALKHOUJAH. Department of Clinical Sciences, College of Pharmacy and Health Science, Ajman University, Ajman, United Arab Emirates. Sahab1997@hotmail.com Neena ABRAHAM. College of Pharmacy, JSS Academy of Higher Education & Research, Karnataka, India. neenainchikalayil@gmail.com

Ahmad El OUWEINI. College of Pharmacy, Gulf Medical University, Ajman, United Arab Emirates. dr.ahmedelouweini@gmu.ac.ae,

Sara MANSOUR. School of Pharmacy, Lebanese International University, Beirut, Lebanon. Sara.a.mansour@hotmail.com

Syed Wassif GILLANI. College of Pharmacy, Gulf Medical University, Ajman, United Arab Emirates. dr.syedwasif@gmu.ac.ae

Rabih HALLIT. School of Medicine and Medical Sciences, Holy Spirit University of Kaslik (USEK), P.O. Box 446 Jounieh Lebanon; Department of Infectious Disease, Bellevue Medical Center, Mansourieh; Department of Infectious Disease, Notre Dame des Secours University Hospital, Postal Code 3, Byblos, Lebanon. hallitrabih@hotmail.com

Souheil HALLIT. School of Medicine and Medical Sciences, Holy Spirit University of Kaslik, P.O. Box 446, Jounieh, Lebanon; Applied Science Research Center, Applied Science Private University, Amman, Jordan souheilhallit@hotmail.com,

Diana MALAEB*. College of Pharmacy, Gulf Medical University, Ajman, United Arab Emirates. dr.diana@gmu. ac.ae

INTRODUCTION

Coronavirus disease 2019, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, was initially reported in late December 2019 in Wuhan city, China and declared a pandemic in March 11, 2020. The infection rapidly spreads worldwide critically impacting public health systems and encompasses a spectrum of clinical symptoms including fever, dry cough, and fatigue, often occurring with pulmonary involvement. Wildlife hosts and infected patients are currently the primary sources of the disease, which is transmitted indirectly via infected air droplets when person-to-person close contact happens 2. COVID-19 infection was not only an epidemic condition but also progressed to be classified as a pandemic disorder. Various efforts as intense public health efforts, preventive measures, tailored treatment strategies, and vaccine administration were implemented to contain the epidemic worldwide.3

There are different stages of COVID-19 infection based upon symptom severity, lung involvement, and the manifestation of hypoxemia. The symptoms range from upper respiratory tract infection, dyspnea, mild to severe pneumonia, and followed by death.⁴ Overall various strategies as ensuring appropriate fluid management, controlling inflammation, implementing ventilation, and prescribing antiviral medications are widely used to treat the clinical symptoms of COVID -19. The outpatient treatment options aimed to minimize the need for hospital admission, shorten infection duration, decrease severity, and prevent post-COVID-19 syndrome.⁵ Although there is advancement with the use of mechanical ventilation

https://doi.org/10.18549/PharmPract.2024.2.2917

and extracorporeal oxygen supplementation, there was a delay in the approval of anti-viral targeted against COVID-19.6 The choice of investigational drugs is based upon in-vitro efficacy data and pharmacokinetic simulations to predict lung tissue drug concentrations.7 The development of simple and effective oral medications are highly preferable cornerstone medications for the treatment of COVID-19 infection among elderly and patients living at homes.8 Thus, oral anti-viral agents play a role in treating breakthrough infection in COVID-19 patients as vaccine administration is an effective measure for preventing COVID-19. Some antiviral drugs have been approved for the treatment of COVID-19.9 Favipiravir, an antiviral medication belonging to RNA-dependent RNA polymerase inhibitor, is FDA approved for the treatment of novel strains of influenza but not COVID-19 infection.¹⁰ Its therapeutic efficacy has been established for the treatment of some life-threatening infections as Ebola, Lassa fever, and rabies. 11,12 Favipiravir has received increasing attention and showed promising results in patients with mild to moderate COVID-19.3,13-15 Two clinical studies conducted on hospitalized COVID-19 patients treated with Favipiravir showed reduction in the time for viral clearance, improvement in the chest CT scan finding 16, and a significantly reduction in the time to relief from pyrexia and cough compared to patients given the symptomatic management only.17 Favipiravir has been included in various regimen protocols as a potential treatment for mild to moderate COVID-19 by various health authorities and regulators. 18,19

During COVID-19 pandemic, supplementation with Zinc, Vitamin C, and Vitamin D are widely used in the management of COVID-19 infection since deficiencies in certain minerals as Zinc is associated with serious complications and linked with the development of acute respiratory distress syndrome and increased mortality.²⁰ However, the National Institutes of Health guidelines also stated that there are insufficient data regarding the use of supplements for the treatment of COVID-19.²¹

The protocol of using antiviral therapy in The Department of Health - Abu Dhabi (DOH) depends on the patient's health conditions and comorbidities. Thus, if COVID-19 is confirmed in asymptomatic patients, no treatment is required but Favipiravir is prescribed as a loading dose of 1600 mg orally every 12 hours in the first day, then 600 mg orally every 12 hours as a maintenance dose for 4 days in patients with non-communicable disorders and auto-immune diseases. Furthermore, in COVID -19 patients with pneumonia accompanied with radiological evidence, the dose of Favipiravir should be 1600 mg orally every 12 hours as a loading dose on the first day, then 600 mg orally every 12 hours as a maintenance dose for 6 days. 22,23 There have been many international trials and observational studies that report the efficacy and adverse events of Favipiravir in the management of patients with COVID-19 but data about its efficacy and safety is lacking in the United Arab Emirates. 14,24,25 The aim of our study was to assess the efficacy of Favipiravir versus symptomatic management only in COVID-19 infected patients in the United Arab Emirates.

MATERIALS AND METHODS

Study Design

A cross-sectional study performed from October 2022 through January 2023 and enrolled 476 participants from one COVID-19 center located in United Arab Emirates (UAE). Patients with confirmed laboratory COVID-19 infection were screened for possible enrollment in the study. Eligibility criteria included adult patients residing in the UAE with confirmed COVID-19 infection through Polymerase Chain Reaction (PCR) and did not require hospitalization. Excluded were pregnant, breastfeeding women, participants with severe or critical COVID-19 as defined by World Health Organization. All patients received symptomatic management (vitamin C, vitamin D, Zinc, etc.) alone or in combination with favipiravir at the following dose regimen 1,600 mg/day on day 1, then 600 mg/day on days 2 to 5. Patients were treated in accordance with the UAE government guidelines. Patients

Sample size calculation

Using the G-power software, a minimum sample of 439 was deemed necessary, based on a R² deviation of 5%, an alpha error of 5%, a power of 80% and a maximum of 23 variables to be entered in the final model.

Questionnaire and variables

Data collection was performed by registered pharmacists through identification of patients from medical records who were diagnosed with COVID-19 infection. Patients were contacted by phone. Data was collected through licensed and registered pharmacists using a questionnaire developed based upon other studies.3,5,6,15,28 The questionnaire included two sections; the first section gathered the socio-demographic and socio-economic characteristics: age, gender, marital status, weight, height, employment status, and educational level. Data about COVID-19 symptoms (fever, headache, cough, runny nose, congestion, and sore throat), baseline lab values (hematocrit, serum creatinine, liver enzymes, and platelets) was collected. It assessed previous comorbidities, surgery, and medication history including the medications given during COVID-19 infection, and the number of administered COVID-19 vaccinations. Furthermore, the questionnaire assessed the number of days until symptoms relief after being infected (from day 1 to day 10). Patients who received favipiravir were asked about the side effects of the medication. The questionnaire also included the following scales:

Doctor-patient communication scale (DPC): the scale includes 15 items scored on a Likert scale from 1 to 4 (1 = No, 2= Possibly No, 3 = Possibly Yes, 4 = Yes).²⁹Higher scores indicate better communication between the patient and the doctor (Cronbach's alpha in this study= 0.92).

Lebanese medication adherence scale (LMAS-14): a validated scale with 14 questions assessing medication adherence and used to measure the compliance to medications.³⁰ Higher scores reflect lower degree of adherence (Cronbach's alpha in this study= 0.94).

https://doi.org/10.18549/PharmPract.2024.2.2917

Statistical analysis

IBM SPSS Statistics for Windows, version 25.0 (IBM Corp., Armonk, N.Y., USA) was used to perform the data analysis. The number of days until symptoms relief variable was considered normally distributed, with its skewness and kurtosis values varying between -1 and +1. 31 The Student t test was used to compare two means, whereas Pearson test was used to correlate two continuous variables. Bonferroni correction was applied for multiple analysis; significance in the bivariate analysis was estimated at p = .002; it was calculated by dividing 0.05 by the total number of variables entered in the analysis (=23). A linear regression was then conducted, taking the number of days until symptoms relief as the dependent variable. All factors that showed significance in the bivariate analysis were entered as independent variable. P <0.05 was deemed statistically significant in the final model.

RESULTS

A total of 476 patients was included in this study where 300 patients were prescribed favipiravir and 176 patients given the symptomatic management. Their mean age was 44.18 ± 12.24 years (49.2% females). Other characteristics of the participants are available in Table 1

Table 1. Sociodemographic and other characteristics of the patients (n= 476)	
	n (%)
Gender	
Male	242 (50.8%)
Female	234 (49.2%)
Marital status	
Single	110 (23.1%)
Married	366 (76.9%)
Employment status	
Unemployed	132 (27.7%)
Employed in the medical field	333 (70.0%)
Employed outside the medical field	11 (2.3%)
Education	
Secondary or less	161 (33.9%)
University	314 (66.1%)
Cigarette smoking	
No	422 (88.7%)
Yes	54 (11.3%)
Hematocrit	
Normal	457 (96.0%)
Lower than normal	18 (3.8%)
Higher than normal	1 (0.2%)
Oxygen saturation	
Normal	472 (99.2%)

	T
Lower than normal	4 (0.8%)
Serum creatinine	
Normal	448 (94.1%)
Lower than normal	1 (0.2%)
Higher than normal	27 (5.7%)
Liver enzymes- AST/ALT	
Normal	427 (89.7%)
Higher than normal	49 (10.3%)
Platelets	
Normal	464 (97.7%)
Higher than normal	11 (2.3%)
Cardiovascular disease	
Normal	460 (96.6%)
Lower than normal	16 (3.4%)
Hypertension (yes)	143 (30.0%)
Asthma (yes)	32 (6.7%)
Diabetes (yes)	106 (22.3%)
Dyslipidemia (yes)	55 (11.6%)
Other diseases	68 (14.3%)
	Mean ± SD
Age, years	44.18 ± 12.24
Body Mass Index, kg/m2	30.17 ± 17.17
Lebanese Medication Adherence Scale	49.75 ± 9.57
Doctor patient communication	54.79 ± 5.79

The most commonly described COVID-19 symptoms experienced by the patients were cough, followed by sore throat, headache and fever. The average days for symptoms relief was 4.73 ± 2.25 days. Moreover, 63% of the patients took Favipiravir. Other characteristics of the symptoms, treatments and side effects of Favipiravir are displayed in Table 2.

Bivariate analysis

Having hypertension, as well as the intake of one of the following: Antihistamines, nasal spray, vitamin C and D, zinc and favipravir was significantly associated with a higher mean number of days until symptoms relief (Table 3). Older age (r= 0.15; p= 0.001) and lower medication adherence (higher I scores) (r= 0.28; p <0.001) were significantly associated with a higher mean number of days until symptoms relief. BMI (r= 0.11; p= 0.016) and DPC scores (r= 0.014; p= 0.768) were not associated with the number of days until symptoms relief.

Multivariable analysis

The results of the linear regression taking the number of days until symptoms relief as the dependent variable, showed that the intake of favipiravir vs symptomatic management only was significantly associated with a higher mean number of days until symptoms relief (Table 4).

https://doi.org/10.18549/PharmPract.2024.2.2917

Table 2. COVID-19 symptoms experienced by the patients			
Fever	208 (43.7%)		
Headache	222 (46.6%)		
Fatigue	43 (9.0%)		
Runny nose/ congestion	188 (39.5%)		
Cough	401 (84.2%)		
Body, muscle or joint pain	137 (28.8%)		
Diarrhea	9 (1.9%)		
Sore throat	287 (60.3%)		
Nausea/ vomiting	12 (2.5%)		
Loss of smell or taste	7 (1.5%)		
Shortness of breath	6 (1.3%)		
COVID-19 vaccine intake	463 (97.3%)		
Average number of days until symptoms relief	4.73 ± 2.25		
Pain killers	466 (97.9%)		
Cough syrup	58 (12.2%)		
Antihistamine	409 (85.9%)		
Antibiotics	22 (4.6%)		
Nasal spray	392 (82.4%)		
Vitamin C	470 (98.7%)		
Vitamin D	468 (98.3%)		
Zinc	457 (96.0%)		
Favipiravir intake	300 (63.0%)		
Side effects of favipiravir			
Nausea/vomiting	179 (37.6%)		
Chest pain	176 (37.0%)		
Mood disturbances	178 (37.4%)		
Diarrhea	180 (37.8%)		
Headache	183 (38.4%)		
Stomach acidity	178 (37.4%)		
Body pain	183 (38.4%)		
Increase in liver enzymes	178 (37.4%)		
Hyperuricemia	176 (37.0%)		
Other	199 (41.8%)		

Table 3. Bivariate analysis of factors associated with the number of days until symptoms relief			
	Mean ± SD	р	
Gender		.010	
Male	4.47 ± 2.16		
Female	5.00 ± 2.32		
Education		.923	
Secondary or less	4.70 ± 2.31		
University	4.72 ± 2.21		
Cigarette smoking		.241	
No	4.77 ± 2.32		

Tittps://doi.org	/10.18549/PnarmPra	301.2024.2.2917
Yes	4.39 ± 1.56	
Platelets		.014
Normal	4.68 ± 2.25	
Higher than normal	6.36 ± 1.86	
Cardiovascular disease		.199
Normal	4.70 ± 2.24	
Lower than normal	5.44 ± 2.53	
Hypertension		.001
No	4.48 ± 2.11	
Yes	5.31 ± 2.46	
Asthma		.006
No	4.65 ± 2.26	
Yes	5.78 ± 1.91	
Diabetes		.204
No	4.66 ± 2.24	
Yes	4.97 ± 2.29	
Dyslipidemia		.181
No	4.68 ± 2.27	
Yes	5.11 ± 2.11	
COVID-19 vaccine intake		.667
No	4.46 ± 2.22	
Yes	4.73 ± 2.25	
Pain killers		.003
No	3.50 ± .97	
Yes	4.75 ± 2.26	
Cough syrup		.003
No	4.81 ± 2.32	
Yes	4.10 ± 1.56	
Antihistamine		<.001
No	3.87 ± 1.59	
Yes	4.87 ± 2.31	
Antibiotics		.699
No	4.74 ± 2.27	
Yes	4.55 ± 1.87	
Nasal spray		<.001
No	3.32 ± 1.18	
Yes	5.03 ± 2.31	
Vitamin C		.001
No	3.50 ± .55	
Yes	4.74 ± 2.26	
Vitamin D		.002
No	3.00 ± 1.07	
Yes	4.76 ± 2.25	
Zinc		<.001
No	3.53 ± .96	
Yes	4.78 ± 2.28	

https://doi.org/10.18549/PharmPract.2024.2.2917

Favipiravir		<.001
No	3.37 ± 1.08	
Yes	5.52 ± 2.37	

Numbers in bold indicate significant *p* values after Bonferroni correction.

Table 4. Linear regression taking the number of days until symptoms relief as the dependent variable				
	Unstandardized Beta	Standardized Beta	р	95% CI
Hypertension (yes vs no*)	.02	.003	.942	43; .46
Antihistamine (yes vs no*)	.08	.01	.778	47; .63
Nasal spray (yes vs no*)	.33	.06	.263	25; .90
Vitamin C (yes vs no*)	41	02	.659	-2.23; 1.41
Vitamin D (yes vs no*)	.88	.05	.345	95; 2.70
Zinc (yes vs no*)	41	04	.484	-1.56; .74
Favipiravir (yes vs no*)	2.09	.45	<.001	1.50; 2.68
Age	003	02	.738	02; .01
Medication adherence	004	02	.735	03; .02

Numbers in bold indicate significant p values.

DISCUSSION

Each side effect of favipiravir (nausea/vomiting, chest pain, mood disturbance, diarrhea, stomach acidity, body pain, increase in liver enzymes, hyperuricemia) was experienced by almost 38% of the patients. The results of the linear regression showed that the intake of favipiravir vs symptomatic management was significantly associated with a higher mean number of days until symptoms relief.

Efficacy of Favipiravir

Our results showed that favipiravir intake was associated with a higher mean number of days until symptoms relief which is not consistent with the results of a study conducted in Japan where patients receiving favipiravir demonstrated a statistically significant improvement in their clinical condition three days earlier than those receiving placebo. 32 Despite this, there was no evidence of survival benefit for patients treated with favipiravir compared to those receiving oxygen and dexamethasone.33 This lack of effect on survival is consistent with the findings of a recent meta-analysis. 15 Most of the studies lack evidence on the survival benefits mainly because the study population in the clinical trials was primarily composed of patients with nonsevere COVID-19 who were able to tolerate the oral formulation and thus, may have had a lower risk of mortality compared to other populations. The discrepancy between the findings of the present study and the meta-analysis conducted by Shrestha et al.34 might be due to the limited number of studies and small sample size included in the later. According to a randomized study conducted by Adolfo Pérez-García et al. on patients with mild COVID-19, the group receiving favipiravir demonstrated a 50% reduction in virus clearance time compared to the group receiving Lopinavir/Ritonavir.35 According to other studies.36-39 patients who are prescribed favipiravir for 7-14 days show a notable improvement in their clinical condition compared to patients receiving other drugs. However, in our study proving the effectiveness of Favipiravir was challenging, given the wide spectrum of clinical presentation in patients with COVID-19 ranging from mild to severe.

Safety of Favipiravir

In our study, Favipiravir was considered a safe drug with favorable side effect profile, consistent with the results from another study and meta-analysis. 6,34,40 However, in our study side effects occurrence was around 38%, higher than the side effects reported by Erdem et al. (13%). 41 The most commonly documented side effects in this study were gastrointestinal, elevation of liver enzymes, and hyperuricemia consistent with the adverse events profile in other studies. 13,15

Limitations

There are some limitations to our study. First, information bias may be present due to the problems in question understanding, recall deficiency and over or under evaluation of the symptoms. Besides, due to the retrospective nature of our study, a recall bias might be possible. A selection bias can also be considered since the sample was recruited from one institution and was represented more by people with university education and employed in the medical field. Thus, results cannot be extrapolated to the general population. Residual confounding bias is also possible, since there could be factors such as such as natural herbal supplements used, that were not measured in this study.

CONCLUSION

Favipiravir was associated with higher mean days of symptoms relief in patients with mild to moderate COVID-19 infection. Awareness about early identification of symptoms and appropriate timely prescription of antivirals is integral to

https://doi.org/10.18549/PharmPract.2024.2.2917

promote better prognosis and ensure optimal outcome. In addition, this study can open the gate for future research that should focus on the precise documentation of symptom onset and early antivirals prescription. Finally, this study has a profound implication on the minimization of the use of anti-viral medications as the sole medications in COVID-19 infections as it was not associated with better clinical outcome. Thus, health care professionals should focus on the preventive strategies to minimize infectious cases rather than treatment. We should consider probably that the late initiation of antivirals once the patient has advanced symptoms is too late and this would explain their low efficacy in the clinical setting. The findings of this study raise the need for more clinical trials with a larger sample size and utilization of different anti-viral medications. Caution should be exercised in the widespread use of Favipiravir for the COVID-19 epidemic due to limited evidence and specific safety concerns.

DECLARATIONS

Ethical statement: The study was approved by Abu Dhabi health research and technology ethics committee (Ref: DOH/CVDC/2022/1630). All objectives were explained to each patient; oral informed consent was obtained over the phone from all patients prior to enrolling the study.

DATA AVAILABILITY STATEMENT: The database cannot be shared publicly but is available upon a reasonable request from the corresponding author.

DECLARATION OF INTERESTS: The authors declare no conflicts of interest.

FUNDING: This research received no external funding.

AUTHOR CONTRIBUTIONS: Conceptualization, D.M.; methodology, D.M.; validation, D.M. and B.A.; formal analysis, S.H., D.M.; investigation, S.A. N.A.; resources, S.M..; data curation, S.H., D.M.; writing—original draft preparation, S.G. A.O.; writing—review and editing, D.M., S.H.; visualization, R.H.; supervision, D.M.; project administration, B.A., D.M.; funding acquisition. All authors have read and agreed to the published version of the manuscript.

ACKNOWLEDGMENTS: None.

ABBREVIATIONS: FDA: food and drug administration; RNA: Ribonucleic acid; COVID-19: Coronavirus Disease 2019; CT: Computed tomography; DOH: Department of Health; PCR: Polymerase Chain Reaction; UAE: United Arab Emirates; DPC: Doctor patient communication; LMAS: Lebanese Medication Adherence Scale; SD: Standard deviation; CI: confidence interval; AST: Aspartate aminotransferase; ALT: Alanine transaminase; SPSS: Statistical Package for the Social Sciences.

References

- World Health Organization. WHO Director-General's opening remarks at the mission briefing on COVID-19. 2020 [Available from: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020].
- 2. Gandhi M, Yokoe DS, Havlir DV. Asymptomatic Transmission, the Achilles' Heel of Current Strategies to Control Covid-19. N Engl J Med. 2020;382(22):2158-60. https://doi.org/10.1056/nejme2009758
- 3. Dabbous HM, Abd-Elsalam S, El-Sayed MH, et al. Efficacy of favipiravir in COVID-19 treatment: a multi-center randomized study. Arch Virol. 2021;166(3):949-54. https://doi.org/10.1007/s00705-021-04956-9
- 4. Pal JK. Visualizing the knowledge outburst in global research on COVID-19. Scientometrics. 2021;126(5):4173-93. https://doi.org/10.1007/s11192-021-03912-3
- 5. Chandiwana N, Kruger C, Johnstone H, et al. Safety and efficacy of four drug regimens versus standard-of-care for the treatment of symptomatic outpatients with COVID-19: A randomised, open-label, multi-arm, phase 2 clinical trial. EBioMedicine. 2022;86:104322. https://doi.org/10.1016/j.ebiom.2022.104322
- Yanagisawa K, Takara K, Suga H, et al. The Assessment of the Efficacy and Safety of Favipiravir for Patients with SARS-CoV-2 Infection: A Multicenter Non-randomized, Uncontrolled Single-arm Prospective Study. Intern Med. 2022;61(21):3197-204. https://doi.org/10.2169/internalmedicine.9691-22
- 7. Arshad U, Pertinez H, Box H, et al. Prioritization of Anti-SARS-Cov-2 Drug Repurposing Opportunities Based on Plasma and Target Site Concentrations Derived from their Established Human Pharmacokinetics. Clin Pharmacol Ther. 2020;108(4):775-90. https://doi.org/10.1002/cpt.1909
- 8. Duvignaud A, Lhomme E, Pistone T, et al. Home Treatment of Older People with Symptomatic SARS-CoV-2 Infection (COVID-19): A structured Summary of a Study Protocol for a Multi-Arm Multi-Stage (MAMS) Randomized Trial to Evaluate the Efficacy and Tolerability of Several Experimental Treatments to Reduce the Risk of Hospitalisation or Death in outpatients aged 65 years or older (COVERAGE trial). Trials. 2020;21(1):846. https://doi.org/10.1186/s13063-020-04619-1
- 9. Cascella M, Rajnik M, Aleem A, et al. Features, Evaluation, and Treatment of Coronavirus (COVID-19). StatPearls. Treasure Island (FL): StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC.; 2022.
- 10. Furuta Y, Takahashi K, Fukuda Y, et al. In vitro and in vivo activities of anti-influenza virus compound T-705. Antimicrob Agents Chemother. 2002;46(4):977-81. https://doi.org/10.1128/aac.46.4.977-981.2002
- 11. Goldhill DH, Te Velthuis AJW, Fletcher RA, et al. The mechanism of resistance to favipiravir in influenza. Proc Natl Acad Sci U S A. 2018;115(45):11613-8. https://doi.org/10.1073/pnas.1811345115

https://doi.org/10.18549/PharmPract.2024.2.2917

- 12. Zhu W, Chen CZ, Gorshkov K, et al. RNA-Dependent RNA Polymerase as a Target for COVID-19 Drug Discovery. SLAS Discov. 2020;25(10):1141-51. https://doi.org/10.1177/2472555220942123
- 13. Alamer A, Alrashed AA, Alfaifi M, et al. Effectiveness and safety of favipiravir compared to supportive care in moderately to critically ill COVID-19 patients: a retrospective study with propensity score matching sensitivity analysis. Curr Med Res Opin. 2021;37(7):1085-97. https://doi.org/10.1080/03007995.2021.1920900
- 14. Udwadia ZF, Singh P, Barkate H, et al. Efficacy and safety of favipiravir, an oral RNA-dependent RNA polymerase inhibitor, in mild-to-moderate COVID-19: A randomized, comparative, open-label, multicenter, phase 3 clinical trial. Int J Infect Dis. 2021;103:62-71. https://doi.org/10.1016/j.ijid.2020.11.142
- 15. Hassanipour S, Arab-Zozani M, Amani B, et al. The efficacy and safety of Favipiravir in treatment of COVID-19: a systematic review and meta-analysis of clinical trials. Sci Rep. 2021;11(1):11022. https://doi.org/10.1038/s41598-021-90551-6
- 16. Cai Q, Yang M, Liu D, et al. Experimental Treatment with Favipiravir for COVID-19: An Open-Label Control Study. Engineering (Beijing). 2020;6(10):1192-8. https://doi.org/10.1016/j.eng.2020.03.007
- 17. Chen C, Zhang Y, Huang J, et al. Favipiravir Versus Arbidol for Clinical Recovery Rate in Moderate and Severe Adult COVID-19 Patients: A Prospective, Multicenter, Open-Label, Randomized Controlled Clinical Trial. Front Pharmacol. 2021;12:683296. https://doi.org/10.3389/fphar.2021.683296
- 18. Yamakawa K, Yamamoto R, Ishimaru G, et al. Japanese rapid/living recommendations on drug management for COVID-19. Acute Med Surg. 2021;8(1):e664. https://doi.org/10.1002/ams2.664
- 19. Alshahrani NZ, Algethami MR, Alarifi AM, et al. Knowledge and Attitude Regarding Monkeypox Virus among Physicians in Saudi Arabia: A Cross-Sectional Study. Vaccines (Basel). 2022;10(12). https://doi.org/10.3390/vaccines10122099
- 20. Yasui Y, Yasui H, Suzuki K, et al. Analysis of the predictive factors for a critical illness of COVID-19 during treatment relationship between serum zinc level and critical illness of COVID-19. Int J Infect Dis. 2020;100:230-6. https://doi.org/10.1016/j.ijid.2020.09.008
- 21. World Health Organization. A healthy lifestyle WHO recommendations [Internet]. Available from: https://www.who.int/europe/news-room/fact-sheets/item/a-healthy-lifestyle---who-recommendations [
- 22. Circular No (2022/186) Updates on COVD-19 Cases and Contact Management Procedures.
- 23. DOH. National Guidelines for Clinical Management and Treatment of COVID-19 18 th February 2021.
- 24. Hase R, Kurata R, Ishida K, et al. Acute Gouty Arthritis During Favipiravir Treatment for Coronavirus Disease 2019. Internal Medicine. 2020;59:2327 9. https://doi.org/10.2169/internalmedicine.5377-20
- 25. Kocayiğit H, Özmen Süner K, Tomak Y, et al. Observational study of the effects of Favipiravir vs Lopinavir/Ritonavir on clinical outcomes in critically III patients with COVID-19. J Clin Pharm Ther. 2021;46(2):454-9. https://doi.org/10.1111/jcpt.13305
- 26. World Health Organization. Clinical management of COVID-19 Living guideline [Internet]. Available from: https://reliefweb.int/report/world/clinical-management-covid-19-living-guidance-25-january-2021?gclid=CjwKCAiAuOieBhAlEiwAgjCvciAVSsQLGdSsE44pJ065JVHYEVbYn9gXQX9VJUjAw8RuZK1oKpKi8BoCC_QQAvD_BwE.
- 27. ABU DHABI PUBLIC HEALTH CENTRE. Department of health. Circulars. Important documents for professionals. [Internet]. Available from: https://www.doh.gov.ae/en/covid-19/Healthcare-Professionals/Circulars.
- 28. Hung DT, Ghula S, Aziz JMA, et al. The efficacy and adverse effects of favipiravir on patients with COVID-19: A systematic review and meta-analysis of published clinical trials and observational studies. Int J Infect Dis. 2022;120:217-27. https://doi.org/10.1016/j.ijid.2022.04.035
- 29. Sustersic M, Gauchet A, Kernou A, et al. A scale assessing doctor-patient communication in a context of acute conditions based on a systematic review. PLoS One. 2018;13(2):e0192306. https://doi.org/10.1371/journal.pone.0192306
- 30. Ibrahim L, Ibrahim L, Hallit S, et al. Validation of the Lebanese Medication Adherence Scale among Lebanese diabetic patients. Int J Clin Pharm. 2021;43(4):918-27. https://doi.org/10.1007/s11096-020-01197-9
- 31. Hair JF Jr, Hult GTM, Ringle C, et al. A primer on partial least squares structural equation modeling (PLS-SEM): Sage publications 2017.
- 32. Shinkai M, Tsushima K, Tanaka S, et al. Efficacy and Safety of Favipiravir in Moderate COVID-19 Pneumonia Patients without Oxygen Therapy: A Randomized, Phase III Clinical Trial. Infect Dis Ther. 2021;10(4):2489-509. https://doi.org/10.1007/s40121-021-00517-4
- 33. Horby P, Lim WS, Emberson JR, et al. Dexamethasone in Hospitalized Patients with Covid-19. N Engl J Med. 2021;384(8):693-704. https://doi.org/10.1056/nejmoa2021436
- 34. Shrestha DB, Budhathoki P, Khadka S, et al. Favipiravir versus other antiviral or standard of care for COVID-19 treatment: a rapid systematic review and meta-analysis. Virol J. 2020;17(1):141. https://doi.org/10.1186/s12985-020-01412-z
- 35. Pérez-García A, Villalobos-Osnaya A, Hernández-Medel ML, et al. A Randomized, Controlled Study on the Safety and Efficacy of Maraviroc and/or Favipiravir vs Currently Used Therapy in Severe COVID-19 Adults. "COMVIVIR" Trial. Research Square; 2020.
- 36. Pan H, Peto R, Henao-Restrepo AM, Preziosi MP, et al. Repurposed Antiviral Drugs for Covid-19 Interim WHO Solidarity Trial Results. N Engl J Med. 2021;384(6):497-511. https://doi.org/10.1056/nejmoa2023184
- 37. Cao B, Wang Y, Wen D, et al. A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. N Engl J Med. 2020;382(19):1787-99. https://doi.org/10.1056/nejmoa2001282
- 38. Ader F, Bouscambert-Duchamp M, Hites M, et al. Remdesivir plus standard of care versus standard of care alone for the

https://doi.org/10.18549/PharmPract.2024.2.2917

- treatment of patients admitted to hospital with COVID-19 (DisCoVeRy): a phase 3, randomised, controlled, open-label trial. Lancet Infect Dis. 2022;22(2):209-21. https://doi.org/10.1016/s1473-3099(21)00485-0
- 39. Gottlieb RL, Vaca CE, Paredes R, et al. Early Remdesivir to Prevent Progression to Severe Covid-19 in Outpatients. N Engl J Med. 2022;386(4):305-15. https://pubmed.ncbi.nlm.nih.gov/34937145/
- 40. Khamis F, Al Naabi H, Al Lawati A, et al. Randomized controlled open label trial on the use of favipiravir combined with inhaled interferon beta-1b in hospitalized patients with moderate to severe COVID-19 pneumonia. Int J Infect Dis. 2021;102:538-43. https://doi.org/10.1016/j.ijid.2020.11.008
- 41. Erdem HA, Korkma PE, Çağlayan D, et al. Treatment of SARS-CoV-2 pneumonia with favipiravir: early results from the Ege University cohort, Turkey. Turk J Med Sci. 2021;51(3):912-20. https://doi.org/10.3906/sag-2008-33

