# **Original Research**

# Distribution of ACE gene I/D genotypes and clinical characteristics of patients with hypertension and COVID-19 in Indonesia

Ingrid Faustine (D), Deli Marteka (D), Lisa Amelia, Shellinna Kurniawati, Amarila Malik (D), Retnosari Andrajati (D), Septelia Inawati Wanandi (D), Eko Supriyanto (D)

Received (first version): 01-Jul-2023 Accepted: 13-Sep-2023 Published online: 02-May-2024

#### Abstract

Background: Suppression of the renin-angiotensin system by SARS-CoV-2 binding changes the balance between ACE and ACE2, which affects blood pressure regulation. The ACE gene polymorphisms in intron 16 are associated with susceptibility to SARS-CoV-2 infection in patients with hypertension. Objective: This study analyzed the ACE gene polymorphism distribution and determined the probability of infection and severity of hypertension in COVID-19 patients. Methods: One hundred and six adult subjects were involved in this cross-sectional study, comprising 95 COVID-19 subjects and 91 non-COVID-19 subjects from two parts of Indonesia in 2021, i.e. Palu City, Central Celebes, and Lahat District, South Sumatra, DNAs extracted from whole blood were analyzed for I/D polymorphisms by Polymerase Chain Reaction (PCR) method. Results: Distribution of ACE genotypes were found as follows; II (53%), ID (38%), and DD (9%). The percentage of hypertension and the severity of COVID-19 in the Palu population were higher than those in Lahat District, i.e., 44% vs. 14% and 80% vs. 46%, respectively. Although there was no significant association between the I/D genotypes and susceptibility or severity of COVID-19 (p> 0.05), it appeared that subjects with hypertension and dyspnea symptoms were five times more susceptible to a moderate-severe symptom that required hospitalization and was associated with a fivefold increase in the risk of dyspnea symptoms that required hospitalization. However, comorbid hypertension was associated with moderate to severe COVID-19 (p=0.007). Conclusion: It can be assumed that in our studied population, ACE gene I/D polymorphisms and hypertension are not associated with susceptibility to SARS-CoV-2 infection, but the presence of comorbid hypertension is a risk factor for more severe COVID-19.

Keywords: hypertension; COVID-19; ACE gene; insertion-deletion; SARS-CoV-2

Ingrid FAUSTINE. Faculty of Pharmacy, Universitas Indonesia, Depok, 16424, West Java, Indonesia. Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Tadulako University, Palu, 94148, Central Sulawesi, Indonesia. iiningridfaustine@gmail.com

Deli MARTEKA. Faculty of Pharmacy, Universitas Indonesia, Depok, 16424, West Java, Indonesia. deli.marteka@ui.ac.id Lisa AMELIA. Faculty of Pharmacy, Universitas Indonesia, Depok, 16424, West Java, Indonesia. lisa.amelia71@ui.ac.id Shellinna KURNIAWATI. Faculty of Pharmacy, Universitas Indonesia, Depok, 16424, West Java, Indonesia. shellinnak@gmail.com

Amarila MALIK\*. Division of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmacy, Universitas Indonesia, Depok, West Java, Indonesia. amarila.malik@ui.ac.id

**Retnosari ANDRAJATI**. Division of Clinical Pharmacy, Faculty of Pharmacy, Universitas Indonesia, Depok, West Java, Indonesia. retnosaria@gmail.com

Septelia Inawati WANANDI. Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia. septelia@gmail.com Eko SUPRIYANTO. School of Biomedical Engineering & Health Science, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, 81310, Johor, Malaysia. eko@utm. my

### INTRODUCTION

The SARS-CoV-2 virus that causes coronavirus disease 2019 (COVID-19), which emerged in early 2020, was recognized by the World Health Organization (WHO) as a global health threat in March 2020, and COVID-19 was declared a global pandemic with a high mortality rate. Since the outbreak of COVID-19, 634 million cases have been recorded globally. Indonesia reported ±1% of cases, with a case fatality rate of 2.4%, which is higher than the global case fatality rate of 1.2% (until November 21, 2022).¹

COVID-19 is classified as mild, moderate, or severe, depending on the severity of the illness. Patients may develop mild symptoms such as fever and may self-isolate at home or require intubation and mechanical ventilation in the ICU.<sup>2</sup> The strain of the virus, patient comorbidities, and age are some of the prognostic factors for disease severity.<sup>3–5</sup> Comorbid hypertension is often associated with the incidence of COVID-19.<sup>6</sup>

Several regions in Indonesia outside Java have a high proportion of people with hypertension ( $\geq$  30% of the adult population)<sup>7</sup>. Through October 2022, an increase in COVID-19 cases and fatality rates were more than the national average observed in these areas, for example, in Central Sulawesi and South Sumatra, with rates of 2.8% and 4%, respectively.<sup>8–10</sup>

Angiotensin-converting enzyme (ACE) is a crucial component of the renin-angiotensin system (RAS), which that regulates blood pressure by converting angiotensin I to angiotensin



II.<sup>11</sup> Furthermore, the RAS is involved in the pathogenesis of COVID-19: SARS-CoV-2 binds to angiotensin-converting enzyme-2 (ACE2), which is the homolog of ACE, in order to enter host cells.<sup>12</sup> This leads to a downregulation of tissue ACE2, leading to an increase in Ang II, as it cannot perform its role in offsetting the effects of ACE in the RAS.<sup>13</sup> Thus, SARS-CoV-2 infection affects the blood pressure system and facilitates the development of multiorgan damage from SARS-CoV-2.<sup>14,15</sup>

One of the factors associated with hypertension is family history. Genetic factors can increase blood pressure by 30-50%. 16 Variations in the ACE gene can cause variability in serum ACE levels and generate high ACE activity. Such genetic variations are known to explain susceptibility to hypertension. 17,18 One ACE gene polymorphism is characterized by the insertion (I) or deletion (D) of a 287-bp Alu sequence in intron 16 and a single nucleotide polymorphism (SNP) at multiple ACE gene loci.19 Gomez (2020) found that sex (male), hypertension, hypercholesterolemia, and the ACE deletiondeletion (DD) genotype were significantly associated with the severity of COVID-19 in a Caucasian population.<sup>20</sup> In this study, we evaluated the genetic profiles of Indonesian people represented by two distinct regions, i.e., Central Celebes, East Indonesia, and South Sumatra, West Indonesia. Our results add valuable information for a more comprehensive evaluation of Southeast Asian data and provide a reference for individualized treatment and early detection to reduce SARS-CoV-2 transmission and protect vulnerable high-risk patients, particularly immunocompromised individuals, as well as members of conflict-affected population groups. Additionally, these results will provide insights to improve the prognosis of patients with COVID-19 in order to optimize outcomes.

## **MATERIALS AND METHODS**

### **Subjects**

This study was conducted based on the principles of the 1975 Declaration of Helsinki and approved by the Ethics Committee of each participating institution (Ethical Committee of the Faculty of Medicine, Tadulako University, and the Ethics Committee of the University of Indonesia Hospital, RSUI) number 7916/UN.28.1.30/KL /2020 and 0058/SKPE/ KKO/2021/00. Written informed consent was obtained before the investigation. For this cross-sectional study, the Slovin formula was used to calculate the minimum necessary sample size, and a total of 186 subjects were enrolled: 91 residents of Palu City, Central Celebes, and 95 residents of Lahat District, South Sumatra, regions representing East Indonesia and West Indonesia, respectively. Furthermore, the samples obtained were divided into two groups: 91 subjects with no history of being infected with COVID-19, forming the non-COVID-19 group, and 95 subjects who were infected with COVID-19. The non-COVID-19 group comprised patients who received treatment for conditions other than COVID-19 in regional hospitals. A COVID-19 diagnosis was made based on a positive real-time polymerase chain reaction (rt-PCR) test for SARS-CoV-2 from nasopharyngeal swab samples of patients who

received treatment at a regional hospital or self-quarantined under health center monitoring in the period from June to December 2021. All subjects met the following inclusion criteria: (1) they were at least 18 years old, and (2) they had completed medical records. The exclusion criteria were as follows: (1) immunocompromised patients, (2) patients under treatment for malignancy, (3) patients discharged at their own request, and (4) patients lost to follow-up. Clinical classification of patients was based on the COVID-19 treatment guidelines, i.e., (1) mild type: only mild clinical symptoms without signs of pneumonia on imaging; (2) moderate type: fever complications, respiratory symptoms, and pneumonia features; and (3) severe type: complicated by either of the following: (a) respiratory distress, with a respiratory rate of 30 breaths/min; or (b) mean oxygen saturation <93% at rest.<sup>21</sup> Comorbid hypertension was determined based on the diagnosis in the medical record and the presence of antihypertensive therapy received by the subject.

### **DNA** extraction

A 5 mL venous blood sample was collected from each subject in an EDTA-containing tube and processed according to the QIAamp DNA Blood Mini Kit (QIAGEN, Hilden, Germany) manufacturer's protocol. Prior to use, the quality of the DNA was analyzed using agarose gel electrophoresis and GelRed nucleic acid gel staining (Biotium, Fremont, USA); the gels were observed using a Biometra Ti1 UV transilluminator (Biometra, Ltd., Jena, Germany), and the DNA was assessed using a NanoDrop™ One Microvolume UV−Vis Spectrophotometer Thermo Scientific™ (Thermo Fisher Scientific Inc., Waltham, USA).

### I/D genotype analysis (rs1799752) in intron 16

To observe the I/D polymorphism, PCRs were carried out using genomic DNA (gDNA) as a template. A pair of specific primers synthesized by IDT (Integrated DNA Technologies, Inc. Coralville, USA) was used, i.e., the ACE I\_D forward primer 5'-CTGGAGACCACTCCCATCCTTTCT-3' and the reverse primer 5'-GATGTGGCCATCACATTCGTCAGAT-3'. Approximately 25 µl of the amplification reaction mix was prepared from the following components: 10 µL ddH<sub>2</sub>O, 12.5 µL MyTaq HS Red Mix, 0.75 μL of 20 μM of ACE forward primer, 0.75 μL of 20 μM primer ACE reverse, and 20-25 ng of DNA template. Amplification was performed by employing MyTaq™ HS Red Mix (Meridian, Memphis, USA) with a PCR T100™ Thermocycler (Bio-Rad Laboratories, Inc. California, USA) and T-Professional Basic Thermocycler (Biometra, Ltd., Jena, Germany) under the following conditions: 95°C for 1 minute (pre-denaturation), followed by 30 cycles of 94°C for 30 seconds (denaturation), 58°C for 15 seconds (annealing), 72°C for 30 seconds (extension) and 72°C for 6 minutes (post-extension).

The PCR products were analyzed on a 2% agarose gel stained with GelRed nucleic acid stain, with a 100-bp DNA ladder for reference (*Geneaid* Biotech Ltd. New Taipei City, Taiwan). The gel was observed using a gel imaging system to visualize the amplicon bands. Based on the bands that appeared on the gel at 190 bp and 490 bp, representing deletion and insertion,



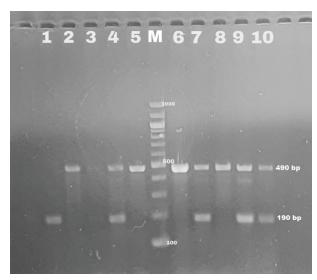
respectively, we identified the genotypes II, ID, and DD and the alleles I and D.

#### **Data and instruments**

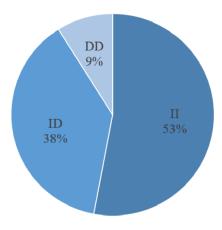
Data were collected from medical records, and validated instruments were distributed to each subject to be completed with a team of assistants. The variables included sex, height and weight, and smoking status. Category of blood pressure was defined according to European Society Hypertension (ESH) guidelines where the systolic and diastolic for normotensive is 120-129 and/or 80-84 mmHg; prehypertension is 130-139 and/or 85-89 mmHg; hypertension is ≥140 and/or ≥90 mmHg.<sup>22</sup> The GFR value was calculated using the formula described by Cockcroft and Gault in 1976 (mL/min/1.73 m<sup>2</sup>). The prognostic category of acute kidney injury was defined according to the Kidney Disease: Improving Global Outcomes (KDIGO) guidelines.<sup>23</sup> Body mass index (BMI) was calculated as follows: BMI= weight(kg)/height(m2). The BMI categories refer to nutritional status based on WHO guidelines.<sup>24</sup> Subjects were asked about their smoking status. Smokers were defined as smoking daily for more than one year or having quit less than six months ago. Nonsmokers were defined as having never smoked or having quit smoking more than six months ago.

### Statistical analysis

Categorical variables were expressed as sums and percentages, while continuous variables were expressed as the mean and standard deviation ranges after the Shapiro–Wilk test to assess the normal distribution. Differences between groups were evaluated using chi-square and Fisher's tests. Bivariate logistic regression and odds ratios were used to test the strength of the risk. For all statistical tests, we used SPSS 21 (IBM Corp., Armonk, NY, USA). Statistical significance was defined as p < 0.05, and all p values were two-tailed.


### **RESULTS**

### Detection of ACE I/D gene polymorphisms


One hundred eighty-six subjects who met the criteria and were willing to participate in the study were enrolled. Blood samples were successfully collected, and gDNA was isolated and used as the template for PCR. The quality of the gDNAs was analyzed using agarose gel electrophoresis; the gel was stained with GelRed nucleic acid stain and observed using a UV transilluminator (data not shown). The concentration and purity of the gDNAs were also measured with a NanoDrop before PCR (data not shown).

The PCR results for the I/D genotypes at rs1799752 of the ACE gene showed the presence of a 490-bp fragment, which corresponded to a homozygous insertion-insertion (II) mutant genotype, i.e., an insertion of 287 bp in both alleles. In addition, a 190-bp fragment characterized as wild type corresponded to the DD genotype, and two fragments at 190 bp and 490 bp represented the heterozygous insertion—deletion (ID) mutant genotype (Figure 1). Genotype results were obtained for all 186 subject samples tested by using PCR; the II genotype was

identified in 98 subjects (49%), the ID genotype in 71 subjects (42%), and the DD genotype in 17 subjects (9%) (Figure 2).



**Figure 1.** Representation of an I/D PCR gel photo. Lane 1 corresponds to the DD genotype with a 190-bp band. Lanes 2, 5, 6, and 8 correspond to the II genotype with 490-bp bands. Lanes 4, 7, 9, and 10 correspond to the ID genotype with bp bands of 490+190 bp. M, 100-bp DNA ladder (Geneaid).



**Figure 2.** Proportion of ACE gene I/D genotype (rs1799752) frequencies in 186 subjects. A third genotype appeared in this population, with the most common genotype being II.

# Distribution of the clinical characteristics and genotypes of all subjects with COVID-19

Based on their medical record histories, 95 subjects with confirmed COVID-19 were assessed, while 91 subjects who had never been diagnosed with COVID-19 were recruited as the non-COVID-19 group. Comparative analysis showed that the I/D genotypes of the *ACE* gene, hypertension, and high blood pressure were not significantly associated with a person's susceptibility to COVID-19 (p > 0.05). These data are shown in Table 1. Nevertheless, the percentages of the homozygous II and DD genotypes were higher in the COVID-19 group than in the non-COVID-19 group, whereas that of allele I was equal.



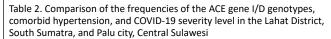
Faustine I, Marteka D, Amelia L, Kurniawati S, Malik A, Andrajati R, Wanandi SI, Supriyanto E. Distribution of ACE gene I/D genotypes and clinical characteristics of patients with hypertension and COVID-19 in Indonesia. Pharmacy Practice 2024 Apr-Jun;22(2):2914.

https://doi.org/10.18549/PharmPract.2024.2.2914

Furthermore, the hypertension status of the non-COVID-19 group was higher than that of the COVID-19 group.

# Clinical characteristics and distribution of the ACE gene I/D genotypes in the COVID-19 population

The COVID-19 subjects from the Lahat District, South Sumatra, showed a higher percentage of the DD genotype than those from Palu City, Central Celebes. In contrast, the ID genotype was more common in the Palu City population. Regarding allele frequencies, 70% of the Palu City population had allele I, compared to 63% of the Lahat District population. The percentage of people with comorbid hypertension, high blood pressure, and moderate to severe COVID-19 was significantly higher in the Palu population than in the Lahat population (p<0.05) (Table 2).


# Clinical characteristics and ACE gene I/D genotype distribution in patients with comorbid hypertension and COVID-19

Hypertension is known to be a common comorbidity of COVID-19. This study found that 28% of COVID-19 subjects

Table 1. Distribution of the demographic profiles and ACE gene I/D genotype frequencies in COVID-19 and non-COVID-19 subjects

| Variable                      | All COVID-19 | Non-<br>COVID-19<br>n (%) | р     |  |
|-------------------------------|--------------|---------------------------|-------|--|
| ACE Genotype                  |              |                           |       |  |
| II                            | 54 (57)      | 44 (48)                   |       |  |
| ID                            | 30 (32)      | 41 (45)                   | 0.128 |  |
| DD                            | 11 (12)      | 6 (7)                     |       |  |
| Sex                           |              |                           |       |  |
| Male                          | 47 (49)      | 40 (44)                   | 0.070 |  |
| Female                        | 48 (51)      | 51 (56)                   | 0.272 |  |
| Age group (y)                 |              |                           |       |  |
| 18-39                         | 34 (35)      | 22 (24)                   |       |  |
| 40-59                         | 50 (53)      | 57 (63)                   | 0.224 |  |
| >=60                          | 11 (12)      | 12 (13)                   |       |  |
| Comorbidity                   |              |                           |       |  |
| With Hypertension             | 27 (28)      | 46 (51)                   | 0.002 |  |
| Without Hypertension          | 68 (72)      | 45 (49)                   | 0.003 |  |
| Blood Pressure Classification |              |                           |       |  |
| Normotension                  | 63 (66)      | 43 (47)                   |       |  |
| Prehypertension               | 18 (19)      | 11 (12)                   | 0.000 |  |
| Hypertension                  | 14 (15)      | 37 (41)                   |       |  |
| BMI (kg/m2)                   |              |                           |       |  |
| < 18.5                        | 4 (4)        | 7 (8)                     |       |  |
| 18.5–24.9                     | 39 (41)      | 42 (46)                   | 0.385 |  |
| ≥ 25                          | 52 (55)      | 42 (46)                   | 1     |  |
| Smoking                       |              |                           |       |  |
| No                            | 80 (84)      | 84 (92)                   | 0.420 |  |
| Yes                           | 15 (16)      | 7 (8)                     | 0.138 |  |

I (Insertion), D (Deletion), BMI (Body Mass Index)



| Variable                      | Palu City - Central Celebes Subject n (%) | Lahat District - South Sumatera Subject n (%) | p     |
|-------------------------------|-------------------------------------------|-----------------------------------------------|-------|
| ACE Genotype                  |                                           |                                               |       |
| II                            | 25 (56)                                   | 29 (58)                                       | 0.610 |
| ID                            | 16 (36)                                   | 14 (28)                                       |       |
| DD (wild type)                | 4 (9)                                     | 7 (14)                                        |       |
| Allele Frequencies            |                                           |                                               |       |
| I                             | 50 (70)                                   | 58 (63)                                       | N/A   |
| D                             | 36 (30)                                   | 28 (37)                                       |       |
| Comorbidity                   |                                           |                                               |       |
| With Hypertension             | 20 (44%)                                  | 7 (14%)                                       | 0.002 |
| Without Hypertension          | 25 (56%)                                  | 43 (86%)                                      |       |
| Blood Pressure Classification |                                           |                                               |       |
| Normotension                  | 22 (48%)                                  | 38 (76%)                                      | 0.017 |
| Prehypertension               | 12 (27%)                                  | 8 (16%)                                       |       |
| Hypertension                  | 11 (25%)                                  | 4 (8%)                                        |       |
| Severity Level                |                                           |                                               |       |
| Mild                          | 9 (20%)                                   | 27 (54%)                                      | 0.001 |
| Moderate-Severe               | 36 (80%)                                  | 23 (46%)                                      |       |

I (Insertion), D (Deletion)

had comorbid hypertension (Table 1). Table 3 shows that the I/D genotype of the *ACE* gene is not a risk factor for comorbid hypertension or the severity of COVID-19. Middle-aged adults more at risk of developing hypertension than young adults. The blood pressure classification results indicated that 46% of patients with COVID-19 and hypertension had high blood pressure, and comorbid hypertension was a risk factor for more severe COVID-19 (Table 3).

Table 4 shows that hypertension and moderate to severe disease were risk factors for hospitalization (p < 0.05). We noted that the various clinical symptoms observed in the subjects were related to COVID-19. The proportion of COVID-19 cases based on symptoms is summarized in Figure S1. Furthermore, consistent with previously reported results, we noted two symptoms that were significantly associated with comorbid hypertension and COVID-19 severity, i.e., anosmia and dyspnea (p < 0.05). Dyspnea was predominant in patients with comorbid hypertension and moderate to severe COVID-19. Anosmia was observed in subjects without comorbid hypertension and mild COVID-19. The 67 hospitalized subjects were assessed based on routine laboratory parameters, including hematology, electrolytes, and biochemical parameters. The complete analysis of symptoms and laboratory parameters is summarized in Table S1. Based on vital signs and laboratory parameters, we found that decreased oxygen saturation and increased respiration rate were clinical conditions associated



Faustine I, Marteka D, Amelia L, Kurniawati S, Malik A, Andrajati R, Wanandi SI, Supriyanto E. Distribution of ACE gene I/D genotypes and clinical characteristics of patients with hypertension and COVID-19 in Indonesia. Pharmacy Practice 2024 Apr-Jun;22(2):2914. https://doi.org/10.18549/PharmPract.2024.2.2914

| Variable                      | Comorbid Disease      |                    |                            | Sev           |                       |                           |
|-------------------------------|-----------------------|--------------------|----------------------------|---------------|-----------------------|---------------------------|
|                               | No Hypertension n (%) | Hypertension n (%) | p (OR 95% IC)              | Mild<br>n (%) | Moderate-Severe n (%) | p (OR 95% IC)             |
| ACE Genotype                  |                       |                    |                            |               |                       |                           |
| II                            | 36 (53)               | 18 (67)            | 0.330<br>2.25 (0.44-11.52) | 20 (56)       | 34 (58)               | 0.286<br>2.04 (0.55-7.55) |
| ID                            | 23 (34)               | 7 (26)             | 0.725<br>1.37 (0.24-7.88)  | 10 (28)       | 20 (34)               | 0.223<br>2.40 (0.59-9.82) |
| DD (wild type)                | 9 (13)                | 2 (7)              | Ref                        | 6 (16)        | 5 (8)                 | Ref                       |
| Sex                           |                       |                    |                            |               |                       |                           |
| Male                          | 33 (49)               | 14 (52)            | 0.948                      | 16 (44)       | 31 (53)               | 0.579                     |
| Female                        | 35 (51)               | 13 (48)            | 0.88 (0.36-2.14)           | 20 (56)       | 28 (47)               | 0.72 (0.31-1.66)          |
| Age group (y)                 |                       |                    |                            |               |                       |                           |
| 18-39                         | 30 (44)               | 4 (15)             | Ref                        | 15 (42)       | 19 (32)               | Ref                       |
| 40-59                         | 32 (47)               | 18 (67)            | 0.023<br>0.16 (0.03-0.78)  | 17 (47)       | 33 (56)               | 0.479<br>1.53 (0.63-3.75) |
| ≥60                           | 6 (9)                 | 5 (19)             | 0.559<br>0.68 (0.18-2.52)  | 4 (11)        | 7 (12)                | 0.919<br>1.38 (0.34-5.62) |
| BMI (kg/m2)                   |                       |                    |                            |               |                       |                           |
| < 18.5                        | 1 (1)                 | 3 (11)             | 0.075<br>0.12 (0.01-1.23)  | 2 (6)         | 2 (3)                 | 0.562<br>1.44 (0.18-11.3) |
| 18.5–24.9                     | 29 (43)               | 10 (37)            | Ref                        | 16 (44)       | 23 (39)               | Ref                       |
| ≥ 25                          | 38 (56)               | 14 (52)            | 1.000<br>1.07 (0.41-2.73)  | 18 (50)       | 34 (58)               | 0.684<br>1.31 (0.56-3.09) |
| Comorbidity                   |                       |                    |                            |               |                       |                           |
| With Hypertension             | N/A                   | Α                  | N/A                        | 4 (11)        | 23 (39)               | 0.007                     |
| Without Hypertension          |                       |                    |                            | 32 (89)       | 36 (61)               | 5.11 (1.59-16.36          |
| Blood Pressure Classification |                       |                    |                            |               |                       |                           |
| Normotension                  | 52 (76)               | 8 (28)             | Ref                        | 23 (64)       | 37 (63)               | Ref                       |
| Prehypertension               | 14 (21)               | 6 (21)             | 0.000<br>0.02 (0.00-0.13)  | 9 (25)        | 11 (19)               | 0.792<br>0.76 (0.27-2.11) |
| Hypertension                  | 2 (3)                 | 13 (46)            | 0.003<br>0.07 (0.01-0.39)  | 4 (11)        | 11 (19)               | 0.588<br>1.71 (0.49-6.01) |

I (Insertion), D (Deletion), BMI (Body Mass Index)

| Variable              | Comorbid Disease         |                    |                            | Severity Level |                       |                            |
|-----------------------|--------------------------|--------------------|----------------------------|----------------|-----------------------|----------------------------|
|                       | No Hypertension<br>n (%) | Hypertension n (%) | p (OR 95% IC)              | Mild<br>n (%)  | Moderate-Severe n (%) | p<br>(OR 95% IC)           |
| Type of Care (n = 95) |                          |                    |                            |                |                       |                            |
| Hospital Admission    | 42 (62)                  | 25 (93)            | 0.006                      | 9 (25)         | 58 (98)               | 0.000                      |
| Self-quarantine       | 26 (38)                  | 2 (7)              | 0.13 (0.03-0.59)           | 27 (75)        | 1 (2)                 | 0.01 (0.00-0.05)           |
| LoT<br>(≥ 14 days)    | 10 (15)                  | 5 (18)             | 0.429<br>1.32 (0.41-4.29)  | 4 (11)         | 11 (19)               | 0.492<br>1.83 (0.53-6.26)  |
| Symptom (n = 95)      |                          |                    |                            |                |                       |                            |
| Anosmia               | 32 (47)                  | 5 (19)             | 0.019<br>0.26 (0.09-0.75)  | 22 (59)        | 15 (41)               | 0.001<br>0.22 (0.09-0.53)  |
| Dyspnea               | 24 (35)                  | 20 (74)            | 0.001<br>5.24 (1.94-14.15) | 8 (18)         | 36 (82)               | 0.000<br>5.48 (2.13-14.01) |
| Vital Sign (n = 67)   |                          |                    |                            |                |                       |                            |



Faustine I, Marteka D, Amelia L, Kurniawati S, Malik A, Andrajati R, Wanandi SI, Supriyanto E. Distribution of ACE gene I/D genotypes and clinical characteristics of patients with hypertension and COVID-19 in Indonesia. Pharmacy Practice 2024 Apr-Jun;22(2):2914. https://doi.org/10.18549/PharmPract.2024.2.2914

| Temperature<br>(> 37°C)        | 9 (21)  | 2 (8)   | 0.136<br>0.32 (0.06-1.61)  | 1 (10) | 10 (90)  | 0.543<br>1.67 (0.19-14.85) |
|--------------------------------|---------|---------|----------------------------|--------|----------|----------------------------|
| Oxygen Saturation<br>(< 95%)   | 12 (28) | 9 (36)  | 0.718<br>1.41 (0.49-4.04)  | 0 (0)  | 21 (100) | 0.026<br>1.57 (1.29-1.90)  |
| Respiration Rate<br>(> 20 bpm) | 19 (45) | 14 (56) | 0.549<br>1.54 (0.57-4.17)  | 1 (3)  | 32 (97)  | 0.015<br>9.85 (1.15-83.88) |
| Pulse<br>(> 100 bpm)           | 9 (21)  | 7 (28)  | 0.754<br>1.42 (0.45-4.47)  | 2 (13) | 14 (87)  | 0.634<br>1.11 (0.21-5.99)  |
| Biochemical Tests (n = 65)     |         |         |                            |        |          |                            |
| ALT<br>(> 45 U/L)              | 6 (15)  | 7 (29)  | 0.149<br>2.33 (0.68-8.03)  | 2 (15) | 11 (85)  | 0.589<br>0.87 (0.16-4.81)  |
| AST<br>(> 35 U/L)              | 12 (29) | 12 (50) | 0.160<br>2.42 (0.85-6.87)  | 2 (8)  | 22 (92)  | 0.277<br>2.26 (0.43-11.91) |
| Creatinine<br>(> 1.1 mg/dL)    | 10 (24) | 13 (54) | 0.031<br>3.66 (1.25-10.72) | 4 (17) | 19 (83)  | 0.397<br>0.64 (0.15-2.67)  |
| GFR (mL/min/1.73m2)            |         |         |                            |        |          |                            |
| Stage 3 (30–59)                | 7 (17)  | 9 (36)  | N/A                        | 3 (19) | 13 (81)  | N/A                        |
| Stage 4 (15–29)                | 1 (2)   | 1 (4)   |                            | 0 (0)  | 2 (100)  |                            |
| Stage 5 (< 15)                 | 1 (2)   | 1 (4)   |                            | 1 (50) | 1 (50)   |                            |
| Blood Glucose<br>(>200 mg/dL)  | 4 (10)  | 7 (28)  | 0.049<br>3.71 (0.95-14.39) | 2 (18) | 9 (82)   | 0.485<br>0.68 (0.12-3.85)  |

LoT (length of treatment), ALT (alanine aminotransferase), AST (aspartate aminotransferase, GFR (glomerular filtration rate)

with moderate to severe COVID-19. In addition, we found that increased creatinine and blood glucose values were associated with comorbid hypertension in COVID-19 patients.

### **DISCUSSION**

This study provides information on the distribution of *ACE* gene I/D genotypes and their correlation with demographic profiles and clinical characteristics, as well as their association with the severity of COVID-19 and comorbid hypertension in an Indonesian population. This study also presents data on SARS-CoV-2 infection in Indonesia, particularly in regions of West Indonesia and East Indonesia. I/D gene polymorphisms of the 287-bp Alu element often occur in intron 16 of the *ACE* gene. Although this insertion occurs in the intron region, it has been reported that ACE exonization appears based on splicing analysis. Thus, the presence of an exonized Alu element extends the length of this series of segments, and upon translation, the sequence exhibits a premature termination codon (PTC), indicating a possible truncation of the protein.<sup>27</sup>

In this study, all dominant subjects had the II genotype (53%), although the difference in the distribution of I/D genotypes of the *ACE* gene between the COVID-19 and non-COVID-19 groups was nonsignificant (p= 0.128). These data showed that the I/D genotypes were not associated with an individual's susceptibility to COVID-19. Similar results were also shown in the studies by Gomez (2020) and Hubacek (2021), which did not show a significant difference.<sup>20,27</sup> However, Jacob's (2021) study on the levels of ACE2 protein in the pulmonary alveolar epithelium based on I/D genotypes stated that patients with genotype II showed an increase in the level of ACE2 protein

in the lung epithelium, which can facilitate the entry of the virus into the host organism, given that the virus uses the ACE2 receptor as an entrance.<sup>28</sup> Mutations at other points in the ACE gene, mutations in other genes that play a role in the RAS, and epigenetic factors can affect the phenotype and gene expression in each population. Our previous research showed that hypertension and the genes rs4331 ACE and rs2074192 ACE2 impact the severity of COVID-19.18,29 Therefore, differences in results between populations could be due to the interaction of other factors that affect individual susceptibility to hypertension and COVID-19. We assume that at the gene level, there is a role for ACE gene mutations at other loci, that RAS-related genes are involved as well, and that epigenetic factors, namely, DNA methylation and histone modifications, also influence the phenotype. On the other hand, lifestyle, environmental exposure, and social status can also change gene expression.30,31

As an archipelagic country with heterogeneous characteristics and lifestyles, Indonesia has a diverse population. In particular, the people of western Indonesia, e.g., the Lahat District, are ethnic Deutero-Malays, and the people of eastern Indonesia, e.g., Palu City and Central Celebes, are ethnic Proto-Malays and Melanesians; these populations are interesting groups to study. Here, we report no significant difference in the distribution of the ACE I/D genotypes between the two regions. The percentage of the II genotype in the two areas was comparable, and the ID genotype was more common in the Palu population. In contrast, the DD genotype was more common in the Lahat population. Comorbid hypertension was found more frequently in the Palu population than in the Lahat population, i.e., 44% and 14%, respectively. This result is consistent with the higher percentage of high blood pressure



in the Palu population. Based on the 2018 data of Riskesdas, Central Celebes ranks 11th among the regions with the highest prevalence of hypertension based on doctors' diagnoses, and the South Sumatra region ranks 24<sup>th</sup>. We also found that the Palu population tended to show more severe COVID-19 symptoms than the Lahat population; therefore, hypertension was assessed as a risk factor for the severity of COVID-19.

In an attempt to compare regions, a previous study on a Malaysian male population concluded that 59% of hypertensive patients had the DD genotype.32 As illustrated in Figure S2, several studies have also concluded that the DD genotype is related to the severity of COVID-19. In our study, there was no significant relationship between the I/D genotypes of the ACE gene and the incidence of hypertension and severity of COVID-19 (p > 0.05). These results align with Gunal's (2021) study, which did not find an association between the I/D genotypes of the ACE gene in patients and the severity of COVID-19.33 However, we found a higher percentage of the II genotype in the group with comorbid hypertension and moderate to severe COVID-19 susceptibility. In comparison, the II genotype is associated with more severe COVID-19 in European populations.<sup>27,34</sup> The II genotype is also related to low ACE activity.35 The association between ACE and ACE2 may confer susceptibility to SARS-CoV-2 infection and COVID-19.<sup>28</sup>

Hypertension is still the most common comorbidity in COVID-19 patients to date. As illustrated in Figure S3, COVID-19 with comorbid hypertension was more severe than COVID-19 without hypertension in Asian and European subjects. We found that 28% of subjects presented with comorbid hypertension, and middle age was an associated risk factor. A study in South Korea showed that the 50- to 59-year-old age group was the group most likely to be hospitalized for COVID-19, and 30% of hospitalized patients exhibited comorbid hypertension. Research involving residents of Wuhan also showed that those over 40 years of age experienced more severe COVID-19 symptoms, 37 as illustrated in Figure S4. It was previously reported that older age was a significant independent predictor of mortality in SARS and MERS. 38

Our analysis showed that subjects with comorbid hypertension had a fivefold increase in the risk of moderate to severe COVID-19 symptoms, and 93% of hypertensive subjects required hospitalization. In addition, other studies have shown that hypertension is the most common cause of death by disease in the Malaysian population.<sup>39</sup> The frequency of the II genotype is higher in East Asian countries and lower in European and African countries. 40,41 Different I/D polymorphisms alter circulating concentrations of ACE in tissues. SARS-CoV-2 infection disrupts the balance of ACE and ACE2 and increases proinflammatory and profibrotic responses. 42-44 This reaction can increase the tendency for more severe COVID-19 in people with hypertension. This is consistent with our result that complaints of shortness of breath are supported by a decrease in oxygen saturation and an increase in the respiratory rate in the vital signs of subjects with comorbid hypertension and moderate to severe COVID-19. This inflammatory response can rapidly progress to acute respiratory distress syndrome (ARDS). 43,45,46 Aung (2020) stated that ACE gene polymorphisms could determine the risk of ARDS and death from sepsis, and the II genotype significantly favored survival until day 28 in patients with ARDS (p=0.03).<sup>40</sup>

This study found that patients with symptoms of anosmia tended to experience mild symptoms overall, whereas patients with dyspnea tended to experience moderate to severe symptoms. Mutia (2021) stated that the prevalence of anosmia in COVID-19 patients was 38.2%, and the prevalence was 10.2 times higher in COVID-19 patients than in patients with other respiratory infections.<sup>47</sup> This result is assumed to be due to the defense mechanism of supporting cells, such as sustentacular cells, as the initial site of SARS-CoV-2 infection in the olfactory epithelium.<sup>47</sup> ACE2 is expressed in almost all human organs to varying degrees as type II alveolar epithelial cells in the respiratory system, suggesting that the lung is the main target of SARS-CoV-2. In addition, ACE2 is highly expressed in myocardial, pancreatic, and renal proximal tubular cells and small intestinal enterocytes. 48,49 Autopsies of SARS patients have shown that SARS-CoV infection causes injury to several organs, such as the kidneys and liver.<sup>50</sup> These results align with the abnormal laboratory values in this study, such as elevated blood glucose creatinine, AST, and ALT values. Other studies have shown that many critically ill COVID-19 sufferers experience organ damage, including acute lung injury, acute kidney injury, liver dysfunction, and pneumothorax.51-53 The Harapan (2022) meta-analysis study also found that COVID-19 patients with acute liver injury (ALI) had a higher risk of developing severe COVID-19 than patients without ALI.54 Organ involvement and injury are closely related to the distribution of receptors in the body. The presence of a virus-induced inflammatory response, including overexpression of cytokines and chemokines, excessive recruitment of inflammatory cells, lack of interferon, and possible autoantibody production, is considered a vital factor in disease pathogenesis. These findings suggest that abnormal laboratory values indicate severe COVID-19.15,55 In conclusion, it can be assumed that in our studied population, ACE gene I/D polymorphisms and hypertension are not associated with susceptibility to SARS-CoV-2 infection, but the presence of comorbid hypertension is a risk factor for more severe COVID-19.

This study has several limitations. First, this was a cross-sectional study; therefore, we could not directly monitor the condition of the COVID-19 patients. We conducted this study before the vaccination target was fully achieved; the results would likely have been different if the target had been reached. Finally, the number of patients willing to participate in the study was limited, making it difficult to generalize the results of this *ACE* gene polymorphism analysis to other ethnic groups. However, our results can serve as a reference and comparison for further assessing the association of *ACE* I/D gene polymorphisms in a wider study population.

### **ACKNOWLEDGMENTS**

We would like to thank Nadia Farhanah Syafhan, Ph.D for contributing to the Lahat sample analysis of this study. We



Faustine I, Marteka D, Amelia L, Kurniawati S, Malik A, Andrajati R, Wanandi SI, Supriyanto E. Distribution of ACE gene I/D genotypes and clinical characteristics of patients with hypertension and COVID-19 in Indonesia. Pharmacy Practice 2024 Apr-Jun;22(2):2914.

https://doi.org/10.18549/PharmPract.2024.2.2914

thank the COVID-19 nursing and laboratory staff of the regional hospitals at Lahat and Palu for contributing to this study.

### **DATA AVAILABILITY**

The datasets used and analyzed during the current study are available from the corresponding author upon reasonable request.

### **AUTHORS CONTRIBUTION STATEMENT**

Conceptualization: AM, RA, SIW, ES; Data curation: IF, DM, LA, SK; Formal analysis: IF, DM; Methodology: AM, IF, DM; Writing —original draft: IF, DM, LA, SK; Writing —review & editing: AM, IF

### **CONFLICTS OF INTEREST**

The authors declare no competing interests.

#### **FUNDING**

This research was funded by Universitas Indonesia World Class University Research Grants for International Publication Q1 (PPI Q1) 2021, No.: NKB-521/UN2.RST/HKP.05.00/2021 to AM, partially funded by Publikasi Terindeks Internasional Q2 (PUTI Q2) 2022-2023, No.: NKB-543/UN2.RST/HKP.05.00/2022 to AM.

### References

- WHO Coronavirus (COVID-19) Dashboard | WHO Coronavirus (COVID-19) Dashboard With Vaccination Data. Available at: https://covid19.who.int/ (Accessed: 22 Nov 2022).
- 2. Fei Zhou et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(March):1053-62. <a href="https://doi.org/10.1016/S0140-6736(20)30566-3">https://doi.org/10.1016/S0140-6736(20)30566-3</a>
- Voss JD, Skarzynski M, McAuley EM, et al. Variants in SARS-CoV-2 associated with mild or severe outcome. Evol Med Public Heal. 2021;9(1):267-75. <a href="https://doi.org/10.1093/emph/eoab019">https://doi.org/10.1093/emph/eoab019</a>
- 4. Harapan H, Itoh N, Yufika A, et al. Coronavirus disease 2019 (COVID-19): A literature review. J Infect Public Health. 2020;13(5):667-73. https://doi.org/10.1016/j.jiph.2020.03.019
- 5. Karyono DR, Wicaksana AL. Current prevalence, characteristics, and comorbidities of patients with COVID-19 in Indonesia. J Community Empower Heal. 2020;3(2):77. <a href="https://doi.org/10.22146/jcoemph.57325">https://doi.org/10.22146/jcoemph.57325</a>
- 6. Kamyshnyi A, Krynytska I, Matskevych V, et al. Arterial hypertension as a risk comorbidity associated with covid-19 pathology. Int J Hypertens. 2020;2020. https://doi.org/10.1155/2020/8019360
- 7. Tim Riskesdas 2018. Laporan nasional RISKESDAS 2018 [Internet]. Lembaga Penelitian dan Pengembangan Kesehatan; 2019. 155-57 p. Available at: http://labdata.litbang.kemkes.go.id/images/download/laporan/RKD/2018/Laporan\_Nasional\_RKD2018\_FINAL.pdf
- 8. Faustine I, Malik A, Andrajati R, Wanandi SI. Clinical Characteristics and Severity Profile of COVID-19 Patient with Hypertension in Palu, Central Sulawesi. Indones J Pharm. 2021;32(4):563-72. https://doi.org/10.22146/ijp.2729
- 9. Marteka D, Malik A, Faustine I, Syafhan NF. Clinical profile, treatment, and outcomes of patients with COVID-19 in a tertiary referral hospital in South Sumatera, Indonesia: A retrospective single-center study. Belitung Nurs J. 2022;8(6):529-37. <a href="https://doi.org/10.33546/bnj.2302">https://doi.org/10.33546/bnj.2302</a>
- 10. Peta Sebaran | Covid19.go.id [Internet]. Available at: https://covid19.go.id/peta-sebaran. (Accessed: 22 Nov 2022).
- 11. Wong MKS. Angiotensin converting enzymes. In: Handbook of hormones comparative endocrinology for basic and clinical Research. 2016. p. 263-5. https://doi.org/10.1016/B978-0-12-801028-0.00254-3
- 12. M. Al-Kuraishy H, S. Al-Niemi M, R. Hussain N, et al. The Potential Role of Renin Angiotensin System (RAS) and Dipeptidyl Peptidase-4 (DPP-4) in COVID-19: Navigating the Uncharted. In: Selected Chapters from the Renin-Angiotensin System. IntechOpen; 2020. https://doi.org/10.5772/intechopen.92837
- 13. Gheblawi M, Wang K, Viveiros A,et al. Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System: Celebrating the 20th Anniversary of the Discovery of ACE2. Circ Res. 2020;126:1456-74. <a href="https://doi.org/10.1161/CIRCRESAHA.120.317015">https://doi.org/10.1161/CIRCRESAHA.120.317015</a>
- 14. Sieńko J, Kotowski M, Bogacz A, et al. COVID-19: The influence of ACE genotype and ACE-I and ARBs on the course of SARS-CoV-2 infection in elderly patients. Clin Interv Aging. 2020;15:1231-40. https://doi.org/10.2147/CIA.S261516
- 15. Jin Y, Yang H, Ji W, et al. Virology, epidemiology, pathogenesis, and control of covid-19. Viruses. 2020;12(4):1-17. <a href="https://doi.org/10.3390/v12040372">https://doi.org/10.3390/v12040372</a>
- 16. Oliveira-Paula GH, Pereira SC, Tanus-Santos JE, et al. Pharmacogenomics and hypertension: Current insights. Pharmgenomics Pers Med. 2019;12:341-59. <a href="https://doi.org/10.2147/PGPM.S230201">https://doi.org/10.2147/PGPM.S230201</a>
- 17. He Q, Fan C, Yu M, et al. Associations of ACE Gene Insertion / Deletion Polymorphism , ACE Activity , and ACE mRNA Expression with Hypertension in a Chinese Population. PLoS One. 2013;8(10):1-9. <a href="https://doi.org/10.1371/journal.pone.0075870">https://doi.org/10.1371/journal.pone.0075870</a>
- 18. Faustine I, Marteka D, Malik A, Supriyanto E, Syafhan NF. Genotype variation of ACE and ACE2 genes affects the severity of



Faustine I, Marteka D, Amelia L, Kurniawati S, Malik A, Andrajati R, Wanandi SI, Supriyanto E. Distribution of ACE gene I/D genotypes and clinical characteristics of patients with hypertension and COVID-19 in Indonesia. Pharmacy Practice 2024 Apr-Jun;22(2):2914.

https://doi.org/10.18549/PharmPract.2024.2.2914

- COVID-19 patients. BMC Res Notes. 2023;16(1):1-6. https://doi.org/10.1186/s13104-023-06483-z
- 19. Chung CM, Wang RY, Fann CSJ, et al. Fine-Mapping Angiotensin-Converting Enzyme Gene: Separate QTLs Identified for Hypertension and for ACE Activity. PLoS One. 2013;8(3):e56119. https://doi.org/10.1371/journal.pone.0056119
- 20. Gómez J, Albaiceta GM, García-clemente M, et al. Angiotensin-converting enzymes (ACE, ACE2) gene variants and COVID-19 outcome. Gene J. 2020;762(January):145102. https://doi.org/10.1016/j.gene.2020.145102
- 21. Health NI of. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. 2019;130.
- 22. Mancia G, De Backer G, Dominiczak A, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension: The Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Vol. 25, Journal of Hypertension. 2018. 3021-3104 p. https://doi.org/10.1097/HJH.0b013e3281fc975a
- 23. Garabed Eknoyan M, Norbert Lameire, MD P. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Vol. 3, Kidney International supplements. 2013. https://doi.org/10.3182/20140824-6-za-1003.01333
- 24. Body mass index BMI. Available at: https://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi. (Accessed: 13 Mar 2022)
- 25. Mafra FFP, Gattai PP, Macedo MM, et al. The angiotensin-l-converting enzyme insertion/deletion in polymorphic element codes for an AluYa5 RNA that downregulates gene expression. Pharmacogenomics J. 2018;18(4):517-27. <a href="https://doi.org/10.1038/s41397-018-0020-x">https://doi.org/10.1038/s41397-018-0020-x</a>
- 26. A. Syed S. ACE I/D Polymorphism in Hypertensive Patients of Kashmiri Population. Cardiol Res. 2010;1(1):1-7. https://doi.org/10.4021/cr101e
- 27. Hubacek JA, Ladislav Dusek, Ondrej Majek, et al. ACE I/D polymorphism in Czech first-wave SARS-CoV-2-positive survivors. Clin Chim Acta. 2021;519(January):206-9. <a href="https://doi.org/10.1016/j.cca.2021.04.024">https://doi.org/10.1016/j.cca.2021.04.024</a>
- 28. Jacobs M, Lahousse L, Van Eeckhoutte HP, et al. Effect of ACE1 polymorphism rs1799752 on protein levels of ACE2, the SARS-CoV-2 entry receptor, in alveolar lung epithelium. ERJ Open Res. 2021;7(2):1-4. <a href="https://doi.org/10.1183/23120541.00940-2020">https://doi.org/10.1183/23120541.00940-2020</a>
- 29. Faustine I, Malik A, Andrajati R, Wanandi SI. Detection of ACE Gene SNPs Using rhAmp Genotyping Platform and Their Association with I/D Polymorphism in COVID-19 Patients with Hypertension. Indones J Pharm. 2023;34(4):640-50. <a href="https://doi.org/10.22146/ijp.5647">https://doi.org/10.22146/ijp.5647</a>
- 30. Han C, Han X, Liu F, et al. Ethnic differences in the association between angiotensin-converting enzyme gene insertion/ deletion polymorphism and peripheral vascular disease: A meta-analysis. Chronic Dis Transl Med. 2017;3(4):230-41. <a href="https://doi.org/10.1016/j.cdtm.2017.07.002">https://doi.org/10.1016/j.cdtm.2017.07.002</a>
- 31. Zeng W li, Yang S kun, Song N, et al. The impact of angiotensin converting enzyme insertion/deletion gene polymorphism on diabetic kidney disease: A debatable issue. Nefrología. 2021;933(x x):17. https://doi.org/10.1016/j.nefro.2021.07.008
- 32. Heidari F, Vasudevan R, Mohd Ali SZ, et al. Association of insertion/deletion polymorphism of angiotensin-converting enzyme gene among Malay male hypertensive infjects in response to ACE inhibitors. JRAAS J Renin-Angiotensin-Aldosterone Syst. 2015;16(4):872-9. https://doi.org/10.1177/1470320314538878
- 33. Gunal O, Sezer O, Ustun GU, et al. Angiotensin-converting enzyme-1 gene insertion/deletion polymorphism may be associated with COVID-19 clinical severity: A prospective cohort study. Ann Saudi Med. 2021;41(3):141-6. <a href="https://doi.org/10.5144/0256-4947.2021.141">https://doi.org/10.5144/0256-4947.2021.141</a>
- 34. Delanghe JR, Speeckaert MM, De Buyzere ML. COVID-19 infections are also affected by human ACE1 D/I polymorphism. Clin Chem Lab Med. 2020;58(7):1125-6. https://doi.org/10.1515/cclm-2020-0425
- 35. Gemmati D, Tisato V. Genetic hypothesis and pharmacogenetics side of renin-angiotensin-system in COVID-19. Genes (Basel). 2020;11(9):1-17. <a href="https://doi.org/10.3390/genes11091044">https://doi.org/10.3390/genes11091044</a>
- Park HY, Lee JH, Lim NK, et al. Presenting characteristics and clinical outcome of patients with COVID-19 in South Korea: A nationwide retrospective observational study. Lancet Reg Heal - West Pacific. 2020;5:100061. <a href="https://doi.org/10.1016/j.lanwpc.2020.100061">https://doi.org/10.1016/j.lanwpc.2020.100061</a>
- 37. Li X, Xu S, Yu M, et al. Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. J Allergy Clin Immunol. 2020;146(110-8):109-18. https://doi.org/10.1016/j.jaci.2020.04.006
- 38. Smits SL, De Lang A, Van Den Brand JMA, et al. Exacerbated innate host response to SARS-CoV in aged non-human primates. PLoS Pathog. 2010; 6(2):e1000756. https://doi.org/10.1371/journal.ppat.1000756
- 39. Ismail SNA, Abdul Halim Zaki I, Noordin ZM, et al. Clinical characteristics and risk factors for mortality in patients with COVID-19: A retrospective nationwide study in Malaysia. Proc Singapore Healthc. 2022;0(0):1-8. <a href="https://doi.org/10.1177/20101058221085743">https://doi.org/10.1177/20101058221085743</a>
- 40. Aung AK, Aitken T, Teh BM, et al. Angiotensin converting enzyme genotypes and mortality from COVID-19: An ecological study. J Infect. 2020;81(January):961-5. https://doi.org/10.1016/j.jinf.2020.11.012
- 41. Liu M, Yi J, Tang W. Association between angiotensin converting enzyme gene polymorphism and essential hypertension: A systematic review and meta-analysis. JRAAS J Renin-Angiotensin-Aldosterone Syst. 2021;22(1):1-12. <a href="https://doi.org/10.1177/1470320321995074">https://doi.org/10.1177/1470320321995074</a>
- 42. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507-13. <a href="http://dx.doi.org/10.1016/S0140-6736(20)30211-7">http://dx.doi.org/10.1016/S0140-6736(20)30211-7</a>



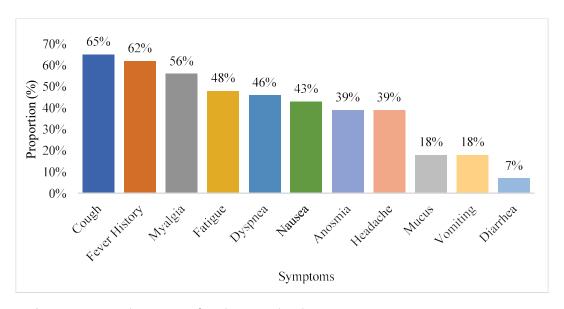
Faustine I, Marteka D, Amelia L, Kurniawati S, Malik A, Andrajati R, Wanandi SI, Supriyanto E. Distribution of ACE gene I/D genotypes and clinical characteristics of patients with hypertension and COVID-19 in Indonesia. Pharmacy Practice 2024 Apr-Jun;22(2):2914.

https://doi.org/10.18549/PharmPract.2024.2.2914

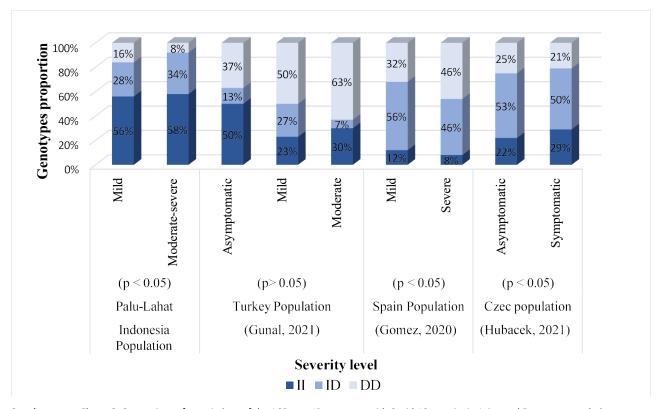
- 43. Li G, Fan Y, Lai Y, et al. Coronavirus infections and immune responses. Vol. 92, Journal of Medical Virology. John Wiley and Sons Inc.; 2020;424-32. <a href="https://doi.org/10.1002/jmv.25685">https://doi.org/10.1002/jmv.25685</a>
- 44. Huang S, Wang J, Liu F, et al. COVID-19 patients with hypertension have more severe disease: a multicenter retrospective observational study. Hypertens Res. 2020;43(8):824-31. <a href="https://doi.org/10.1038/s41440-020-0485-2">https://doi.org/10.1038/s41440-020-0485-2</a>
- 45. Deng SQ, Peng HJ. Characteristics of and Public Health Responses to the Coronavirus Disease 2019 Outbreak in China. J Clin Med. 2020;9(2):575. https://doi.org/10.3390/jcm9020575
- 46. Fuk-Woo Chan J, Yuan S, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 2020;395:514-23. <a href="https://doi.org/10.1016/S0140-6736(20)30154-9">https://doi.org/10.1016/S0140-6736(20)30154-9</a>
- 47. Mutiawati E, Fahriani M, Mamada SS, et al. Anosmia and dysgeusia in SARS-CoV-2 infection: Incidence and effects on COVID-19 severity and mortality, and the possible pathobiology mechanisms a systematic review and meta-analysis. F1000Research. 2021;10:1-28. https://doi.org/10.12688/f1000research.28393.1
- 48. Ni W, Yang X, Yang D, et al. Role of angiotensin-converting enzyme 2 ( ACE2 ) in COVID-19. Crit Care. 2020;24(422):1-10. https://doi.org/10.1186/s13054-020-03120-0
- 49. Duarte-Neto AN, Caldini EG, Gomes-Gouvêa MS, et al. An autopsy study of the spectrum of severe COVID-19 in children: From SARS to different phenotypes of MIS-C. EClinicalMedicine. 2021;35(2021):100850. <a href="https://doi.org/10.1016/j.eclinm.2021.100850">https://doi.org/10.1016/j.eclinm.2021.100850</a>
- 50. Mondello C, Roccuzzo S, Malfa O, et al. Pathological Findings in COVID-19 as a Tool to Define SARS-CoV-2 Pathogenesis. A Systematic Review. Front Pharmacol. 2021;12(April):614586. https://doi.org/10.3389/fphar.2021.614586
- 51. Kim SG, Sung HH. Status of Kidney Function in Hospitalised COVID-19 Patients in the Southern Gyeonggi Province, South Korea. Korean J Clin Lab Sci. 2021;53(3):208-16. https://doi.org/10.15324/kjcls.2021.53.3.208
- 52. Liu YF, Zhang Z, Pan XL, et al. The chronic kidney disease and acute kidney injury involvement in COVID-19 pandemic: A systematic review and meta-analysis. PLoS One. 2021;16(1):e0244779. https://doi.org/10.1371/JOURNAL.PONE.0244779
- 53. Xu W, Huang C, Fei L, et al. Dynamic changes in liver function tests and their correlation with illness severity and mortality in patients with covid-19: A retrospective cohort study. Clin Interv Aging. 2021;16:675-85. http://doi.org/10.2147/CIA.S303629
- 54. Harapan H, Fajar JK, Supriono S, et al. The prevalence, predictors and outcomes of acute liver injury among patients with COVID-19: A systematic review and meta-analysis. Rev Med Virol. 2022;32(3). https://doi.org/10.1002/rmv.2304
- 55. Yang Y, Xiao Z, Ye K, et al. SARS-CoV-2: characteristics and current advances in research. Virol J. 2020;17(1):1-17. <a href="https://doi.org/10.1186/s12985-020-01369-z">https://doi.org/10.1186/s12985-020-01369-z</a>



Faustine I, Marteka D, Amelia L, Kurniawati S, Malik A, Andrajati R, Wanandi SI, Supriyanto E. Distribution of ACE gene I/D genotypes and clinical characteristics of patients with hypertension and COVID-19 in Indonesia. Pharmacy Practice 2024 Apr-Jun;22(2):2914. https://doi.org/10.18549/PharmPract.2024.2.2914


| Supplementary Table 1. Ass                                   | ociation of clinical chara | acteristics with com | orbid hypertension and     | severity of Covid- | 19                    |                            |  |
|--------------------------------------------------------------|----------------------------|----------------------|----------------------------|--------------------|-----------------------|----------------------------|--|
| Comorbid disease                                             |                            |                      | Severity level             |                    |                       |                            |  |
| Variables                                                    | Non-Hypertension n (%)     | Hypertension n (%)   | p (OR 95% IC)              | Mild<br>n (%)      | Moderate-Severe n (%) | p (OR 95% IC)              |  |
| Symptom (n = 95)                                             | •                          |                      |                            |                    |                       |                            |  |
| Cough                                                        | 43 (63)                    | 19 (70)              | 0.675<br>1.38 (0.53-3.61)  | 20 (32)            | 42 (68)               | 0.183<br>1.98 (0.83-4.69)  |  |
| Fever History                                                | 46 (68)                    | 13 (48)              | 0.125<br>0.44 (0.18-1.10)  | 23 (39)            | 36 (61)               | 0.951<br>0.88 (0.37-2.09)  |  |
| Myalgia                                                      | 41 (60)                    | 12 (44)              | 0.240<br>0.53 (0.21-1.29)  | 22 (42)            | 31 (58)               | 0.547<br>0.70 (0.30-1.64)  |  |
| Fatigue                                                      | 34 (50)                    | 12 (44)              | 0.794<br>0.80 (0.33-1.96)  | 21 (46)            | 25 (54)               | 0.194<br>0.52 (0.23-1.22)  |  |
| Dyspnea                                                      | 24 (35)                    | 20 (74)              | 0,001<br>5.24 (1.94-14.15) | 8 (18)             | 36 (82)               | 0.000<br>5.48 (2.13-14.01) |  |
| Nausea                                                       | 28 (41)                    | 13 (48)              | 0.697<br>1.33 (0.54-3.25)  | 15 (37)            | 26 (63)               | 0.987<br>1.10 90.48-2.55)  |  |
| Anosmia                                                      | 32 (47)                    | 5 (19)               | 0,019<br>0.26 (0.09-0.75)  | 22 (59)            | 15 (41)               | 0.001<br>0.22 (0.09-0.53)  |  |
| Headache                                                     | 28 (41)                    | 9 (33)               | 0.636<br>0.71 (0.28-1.82)  | 16 (43)            | 21 (57)               | 0.521<br>0.69 (0.29-1.61)  |  |
| Mucus                                                        | 15 (22)                    | 2 (7)                | 0.078<br>0.28 (0.06-1.33)  | 6 (35)             | 11 (65)               | 1.000<br>1.15 (0.38-3.42)  |  |
| Vomiting                                                     | 14 (20)                    | 3 (11)               | 0.218<br>0.48 (0.13-1.83)  | 7 (41)             | 10 (59)               | 0.975<br>0.84 (0.29-2.46)  |  |
| Diarrhea                                                     | 7 (10)                     | 0 (0)                | 0.088<br>0.69 (0.60-0.79)  | 5 (71)             | 2 (28)                | 0.070<br>0.22 (0.04-1.18)  |  |
| Hematological test (n = 67)                                  |                            |                      |                            |                    |                       |                            |  |
| WBC (10 <sup>9</sup> /L)<br>< 4 or > 11 (10 <sup>9</sup> /L) | 13 (31)                    | 7 (28)               | 1.000<br>0.87 (0.29-2.58)  | 4 (20)             | 16 (80)               | 0.255<br>0.48 (1.11-2.00)  |  |
| RBC<br>(< 4.1 or > 6.1.10 <sup>12</sup> /L)                  | 7 (17)                     | 2 (8)                | 0.269<br>0.43 (0.08-2.28   | 2 (22)             | 7 (78)                | 0.347<br>0.48 (0.08-2.79)  |  |
| Haemoglobin<br>(< 14 or > 18 g/dL)                           | 11 (26)                    | 4 (16)               | 0.506<br>0.54 (0.15-1.91)  | 3 (20)             | 12 (80)               | 0.321<br>0.52 (0.11-2.39)  |  |
| Hematocrit<br>(< 36 or > 47%)                                | 14 (33)                    | 7 (28)               | 0.855<br>0.78 (0.26-2.29)  | 4 (19)             | 17 (81)               | 0.292<br>0.52 (0.12-2.17)  |  |
| Platelets<br>(< 150 or > 450.10 <sup>9</sup> /L)             | 9 (21)                     | 1 (4)                | 0.051<br>0.15 (0.02-1.29)  | 1 (10)             | 9 (90)                | 0.597<br>1.47 (0.16-13.2)  |  |
| Electrolyte test (n = 64)                                    |                            |                      |                            |                    |                       |                            |  |
| Sodium<br>(< 136 or > 146 mEq/L)                             | 19 (48)                    | 10 (42)              | 0.846<br>0.79 (0.28-2.19)  | 6 (21)             | 23 (79)               | 0.152<br>0.36 (0.08-1.59)  |  |
| Potassium<br>(< 3.5 or > 5 mEq/L)                            | 14 (35)                    | 4 (17)               | 0.196<br>0.37 (0.11-1.30)  | 2 (11)             | 16 (89)               | 0.508<br>1.44 (0.27-7.67)  |  |
| Chloride<br>(< 98 or > 106 mEq/L)                            | 10 (25)                    | 9 (38)               | 0.437<br>1.80 (0.60-5.37)  | 4 (21)             | 15 (79)               | 0.251<br>0.47 (0.11-1.98)  |  |
| Biochemical test (n=65)                                      | _                          |                      |                            |                    |                       |                            |  |
| ALT (U/L)                                                    | 6 (15)                     | 7 (29)               | 0.149<br>2.33 (0.68-8.03)  | 2 (15)             | 11 (85)               | 0.589<br>0.87 (0.16-4.81)  |  |
| AST (U/L)                                                    | 12 (29)                    | 12 (50)              | 0.160<br>2.42 (0.85-6.87)  | 2 (8)              | 22 (92)               | 0.277<br>2.26 (0.43-11.91) |  |
| Creatinine<br>(> 1.1 mg/dL)                                  | 10 (24)                    | 13 (54)              | 0.031<br>3.66 (1.25-10.72) | 4 (17)             | 19 (83)               | 0.397<br>0.64 (0.15-2.67)  |  |
| GFR (mL/min/1.73m2)                                          |                            |                      |                            |                    |                       |                            |  |
| Stage 1 and 2 (≥ 60)                                         | 32 (79)                    | 13 (54)              | N/A                        | 5 (11)             | 40 (89)               | N/A                        |  |

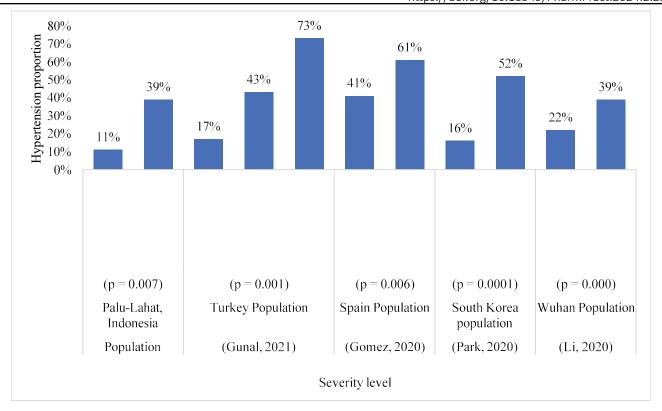



Faustine I, Marteka D, Amelia L, Kurniawati S, Malik A, Andrajati R, Wanandi SI, Supriyanto E. Distribution of ACE gene I/D genotypes and clinical characteristics of patients with hypertension and COVID-19 in Indonesia. Pharmacy Practice 2024 Apr-Jun;22(2):2914.

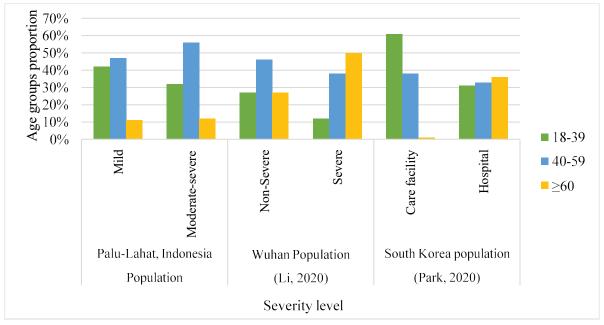
| https://doi.org/10.18549/PharmPract.2024.2.29 |
|-----------------------------------------------|
|-----------------------------------------------|

| Stage 3 (30 - 59)     | 7 (17) | 9 (38) |                            | 3 (19) | 13 (81) |                           |
|-----------------------|--------|--------|----------------------------|--------|---------|---------------------------|
| Stage 4 (15 - 29)     | 1 (2)  | 1 (4)  |                            | 0 (0)  | 2 (100) |                           |
| Stage 5 (< 15)        | 1 (2)  | 1 (4)  |                            | 1 (50) | 1 (50)  |                           |
| Urea<br>(> 50 mg/dL)  | 7      | 1      | 0.126<br>0.21 (0.02-1.83)  | 2      | 6       | 0.305<br>0.42 (0.07-2.50) |
| Blood Glucose (mg/dL) | 4 (10) | 7 (28) | 0.049<br>3.71 (0.95-14.39) | 2 (18) | 9 (82)  | 0.485<br>0.68 (0.12-3.85) |




 $\textbf{Supplementary Figure 1.} \ \textbf{The proportion of Covid-19 cases is based on symptoms}$ 




Supplementary Figure 2. Comparison of associations of the ACE gene ID genotype with Covid-19 severity in Asian and European populations



Faustine I, Marteka D, Amelia L, Kurniawati S, Malik A, Andrajati R, Wanandi SI, Supriyanto E. Distribution of ACE gene I/D genotypes and clinical characteristics of patients with hypertension and COVID-19 in Indonesia. Pharmacy Practice 2024 Apr-Jun;22(2):2914. https://doi.org/10.18549/PharmPract.2024.2.2914



Supplementary Figure 3. Comparison of associations of comorbid hypertension with Covid-19 severity in Asian and European populations



Supplementary Figure 4. Comparison of age group percentages with Covid-19 severity and type of care in Asian populations

